Online citations, reference lists, and bibliographies.
← Back to Search

Microwave Properties Of Conductive Polymers

L. Olmedo, P. Hourquebie, F. Jousse
Published 1994 · Chemistry

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
Abstract Conductive polymers are a new class of microwave absorbing materials which show a number of advantages over traditional granular material. Polypyrrole, Polyaniline, and Polyalkylthiophenes can be applied in specific fields where the conductive inclusion is directly integrated in the matrix or on the substrate (honeycomb, textile) during systhesis, instead of being mechanically dispersed as in the case of extrinsic conductive materials. This method can be used to produce materials with specific properties, whose performances are equivalent to those of magnetic materials but with lower surface mass. The properties of these materials can be easily modified by chemical means and by tailoring the structural properties. We show that dielectric properties strongly depend on the microstructure of conductive polymer. For that purpose, the influence of the molecular weight, density of defects, size of the alkyl chain on the substituted monomer and nature of counter anion have been explored. A theoretical models using physicochemical properties of polymer have been developed in order to calculate the frequency dependence of (e′, e″) with for a chain of Polyaniline.
This paper references



This paper is referenced by
10.1016/j.matchemphys.2020.122694
Rapid microwaving route for pseudocapacitive nanostructured polypyrroles
S. Goel (2020)
10.1016/j.jallcom.2020.154079
Bifunctional carbon-encapsulated FeSiAl hybrid flakes for enhanced microwave absorption properties and analysis of corrosion resistance
Xingzhong Zhang (2020)
10.1021/acsami.0c03544
Filler-Free Conducting Polymers as a New Class of Transparent Electromagnetic Interference Shields.
E. Hosseini (2020)
Multimodal methods of modifying band structure of conductive polymers
C. Goodwin (2019)
10.1007/978-3-319-69378-1_9
CNT Applications in Sensors and Actuators
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_32
Structural Aspects and Morphology of CPs
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_3
Synthesis, Purification, and Chemical Modification of CNTs
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_20
Graphene Applications in Sensors
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_37
Batteries and Energy Devices
P. Chandrasekhar (2018)
10.1016/J.FUPROC.2018.05.028
Structure, electrical conductivity, and dielectric properties of semi-coke derived from microwave-pyrolyzed low-rank coal
S. Liu (2018)
10.1007/978-3-319-69378-1_21
Graphene Applications in Batteries and Energy Devices
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_10
CNT Applications in Drug and Biomolecule Delivery
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_24
Medical and Pharmaceutical Applications of Graphene
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_11
CNT Applications in Microelectronics, “Nanoelectronics,” and “Nanobioelectronics”
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_4
Physical, Mechanical, and Thermal Properties of CNTs
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_25
Graphene Applications in Specialized Materials
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_42
Electrochemomechanical, Chemomechanical, and Related Devices
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_22
Graphene Applications in Electronics, Electrical Conductors, and Related Uses
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_8
CNT Applications in Batteries and Energy Devices
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_14
CNT Applications in the Environment and in Materials Used in Separation Science
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_15
Miscellaneous CNT Applications
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_27
Introducing Conducting Polymers (CPs)
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_31
Syntheses and Processing of CPs
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_39
Displays, Including Light-Emitting Diodes (LEDs) and Conductive Films
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_13
CNT Applications in Electrical Conductors, “Quantum Nanowires,” and Potential Superconductors
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_5
Toxicology of CNTs
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_26
Miscellaneous Applications of Graphene
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_12
Graphene Applications in Displays and Transparent, Conductive Films/Substrates
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_30
Basic Electrochemistry of CPs
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_19
Brief, General Overview of Applications
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_7
CNT Applications in Specialized Materials
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_17
Electronic Structure and Conduction Models of Graphene
P. Chandrasekhar (2018)
See more
Semantic Scholar Logo Some data provided by SemanticScholar