Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

An Approach To Correlate Tandem Mass Spectral Data Of Peptides With Amino Acid Sequences In A Protein Database

J. Eng, A. L. McCormack, J. Yates
Published 1994 · Chemistry, Medicine

Save to my Library
Download PDF
Analyze on Scholarcy
Share
A method to correlate the uninterpreted tandem mass spectra of peptides produced under low energy (10–50 eV) collision conditions with amino acid sequences in the Genpept database has been developed. In this method the protein database is searched to identify linear amino acid sequences within a mass tolerance of ±1 u of the precursor ion molecular weight A cross-correlation function is then used to provide a measurement of similarity between the mass-to-charge ratios for the fragment ions predicted from amino acid sequences obtained from the database and the fragment ions observed in the tandem mass spectrum. In general, a difference greater than 0.1 between the normalized cross-correlation functions of the first- and second-ranked search results indicates a successful match between sequence and spectrum. Searches of species-specific protein databases with tandem mass spectra acquired from peptides obtained from the enzymatically digested total proteins of E. coli and S. cerevisiae cells allowed matching of the spectra to amino acid sequences within proteins of these organisms. The approach described in this manuscript provides a convenient method to interpret tandem mass spectra with known sequences in a protein database.
This paper references
10.1126/SCIENCE.2675315
Electrospray ionization for mass spectrometry of large biomolecules.
J. B. Fenn (1989)
Academic: San Diego
R F Doolittle (1990)
Mononen, I. J. Biul. Chem
V Kaartinen (1991)
10.1126/SCIENCE.1546328
Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry.
D. Hunt (1992)
J Am Sot Mass Spectiom
(1994)
10.1006/BBRC.1993.2009
Protein identification by mass profile fingerprinting.
P. James (1993)
10.1016/S0003-2670(01)93327-6
Computer Identification of Infrared Spectra by Correlation-Based File Searching,
Linda A. Powell (1978)
Biol. Mass Spectrom
M Mann (1993)
10.1016/s0076-6879(04)88032-7
Methods in Enzymology
Thomas E. Creighton (1968)
10.1016/1044-0305(93)80012-N
Techniques in Protein Chemistry
T. Hugli (1989)
10.1073/PNAS.90.11.5011
Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases.
W. Henzel (1993)
Biochpm. Sot. Trans
I j Watkins (1991)
10.1126/SCIENCE.216.4547.716-B
Edwards Defends Budget Cuts at DOE.
R. Smith (1982)
Proc. A'&. Acad. Sci. USA
W Henzel (1993)
In Techniques in Protein Chemistry II; Villafranca
J R Yates (1990)
10.1002/RCM.1290040109
Collisionally activated dissociation of peptides using a quadrupole ion‐trap mass spectrometer
R. E. Kaiser (1990)
Rapid Muss Specfrom
R E Kasier (1990)
Proceedings of the 40th ASMS Conference on Mass Spectro~r~etry nnd Allied Toprcs
D C Stahl (1992)
Am. Sm. Mass Sprctrom
W M Hines (1992)
Clrtn. Sot. Chem. Commun
D F Hunt (1987)
10.1093/CLINCHEM/39.9.2005
Mass spectrometry of proteins and peptides: sensitive and accurate mass measurement and sequence analysis.
D. Arnott (1993)
10.1084/JEM.178.1.27
Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles
R. Chicz (1993)
In Techniques in Protein ChemistryII; Villafranca
D F Hunt (1991)
10.1016/1044-0305(93)80013-O
Techniques in Protein Chemistry II
J. Villafranca (1991)
10.1016/1044-0305(92)87060-C
Pattern-based algorithm for peptide sequencing from tandem high energy collision-induced dissociation mass spectra
W. Hines (1992)
Lutzenkirchen, F. RapidCommun
R Kaufmann (1993)
In Guide to Ye& Genetics and Mokcular Biology; Guthrie, C.; Fink, G., Eds.; Academic: San Diego, 1991; pp m-579
I’. J. Watkins (1991)
10.1126/SCIENCE.1379743
Analysis of the Escherichia coli genome: DNA sequence of the region from 84.5 to 86.5 minutes.
D. Daniels (1992)
Anal. Biochem
J R Yates (1993)
Techniques in Protein Chemistry I& Villafranca
D F Hunt (1991)
10.1146/ANNUREV.BI.61.070192.004553
Mass spectrometry of peptides and proteins.
K. Biemann (1992)
Am. Sm. Mass Spcctram
I A Papayannopoukx (1991)
I. Exp. Med
R M Chicz (1993)
10.1016/0960-9822(93)90195-T
Rapid identification of proteins by peptide-mass fingerprinting
D. Pappin (1993)
Vemuri, S. Biomed. Environ. Mass Specfrom
D P Martinsen (1985)
Spectrosc. Rev
K A Owens (1992)
Groffen, J. Pm. Nat/. Acad. Sci. U.S.A
I Mononen (1991)
10.1038/342682A0
Characterization of a naturally processed MHC class II-restricted T-cell determinant of hen egg lysozyme
S. Demotz (1989)
10.1126/SCIENCE.7513441
Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines.
A. Cox (1994)
10.1006/ABIO.1993.1514
Peptide mass maps: a highly informative approach to protein identification.
J. Yates (1993)
In Guide to Ye& Genetics and Mokcular Biology
P Kolodziej (1991)
Mass Spec/rom
R Kaufmann (1993)
Rapid Commun. Mass Sprctrom
R Kaufmann (1993)
Proc . A ’ &
W. Henzel (1993)
Clin. Chem
D Amott (1993)
Anal. Chin. Actu
L A Powell (1978)
10.1136/bmj.1.4959.155-a
Biochemistry
F. G. Young (1955)
10.1016/0168-1176(91)85052-N
Structural analysis of proteins by capillary HPLC electrospray tandem mass spectrometry
P. Griffin (1991)
10.1126/SCIENCE.1546329
HLA-A2.1-associated peptides from a mutant cell line: a second pathway of antigen presentation.
R. A. Henderson (1992)
Yates, J. R., III. Int. 1. Mass Spectrom. ion Processes
P R Griffin (1991)
Biomed. Env. Mass Spectrom
R S Johnson (1989)
10.1016/s0021-9258(19)67677-5
Glycosaparaginase from human leukocytes. Inactivation and covalent modification with diazo-oxonorvaline.
V. Kaartinen (1991)
10.1039/C39870000548
Peptide sequence analysis by laser photodissociation Fourier transform mass spectrometry
D. Hunt (1987)
10.1016/0076-6879(91)94038-E
Epitope tagging and protein surveillance.
P. Kolodziej (1991)
Eur. J. Biochem
P Edman (1967)
10.1002/MAS.1280040404
Computer applications in mass spectral interpretation: A recent review
D. Martinsen (1985)
10.1073/pnas.88.7.2941
Aspartylglycosaminuria in the Finnish population: identification of two point mutations in the heavy chain of glycoasparaginase.
I. Mononen (1991)
10.1002/RCM.1290071010
Mass spectrometric sequencing of linear peptides by product-ion analysis in a reflectron time-of-flight mass spectrometer using matrix-assisted laser desorption ionization.
R. Kaufmann (1993)
In Guide to Yenst Genetics and MoleClIlar Biology; Guthrie, c.;Fink, G., Eds.; Academic
P. Kolodziej (1991)
10.1016/s0021-9258(18)43377-7
A gas-liquid solid phase peptide and protein sequenator.
R. Hewick (1981)
Rapid Mass Spectrom
Kasler (1990)
Ann. Rev. Biochem
K Biemann (1992)
10.1002/BMS.1200181102
Computer program (SEQPEP) to aid in the interpretation of high-energy collision tandem mass spectra of peptides.
R. S. Johnson (1989)
10.1073/PNAS.84.3.620
Tandem quadrupole Fourier-transform mass spectrometry of oligopeptides and small proteins.
D. Hunt (1987)
10.1016/1044-0305(91)80012-V
A computer program (COMPOST) for predicting mass spectrometric information from known amino acid sequences
I. Papayannopoulos (1991)
10.1080/05704929208018268
Application of Correlation Analysis Techniques to Mass Spectral Data
K. Owens (1992)
10.1042/BST0190957
Mass spectrometry software for biochemical analysis in electrospray and fast atom bombardment modes.
P. F. Watkins (1991)
N&l. Acad. SC;. U.S.A
D F Hunt (1986)
Methods in Enzymology , Vol
S. Colowick (1966)
10.1038/353622A0
Sequence analysis of peptides bound to MHC class II molecules
A. Rudensky (1991)
10.1002/BMS.1200220605
Use of mass spectrometric molecular weight information to identify proteins in sequence databases.
M. Mann (1993)
J. I. RioI. Chem
R M Hewick (1981)
J&s, I'.; Qa Biochem. Biophys. Res. Comnrun
D Pappin (1993)
10.1111/J.1432-1033.1967.TB00047.X
A protein sequenator.
P. Edman (1967)
10.1021/BI00379A001
The primary structure of thioredoxin from Chromatium vinosum determined by high-performance tandem mass spectrometry.
R. S. Johnson (1987)
10.1002/BMS.1200191103
MacProMass: a computer program to correlate mass spectral data to peptide and protein structures.
T. Lee (1990)



This paper is referenced by
10.1007/s00253-010-2900-0
Proteomics of industrial fungi: trends and insights for biotechnology
J. M. P. F. de Oliveira (2010)
SCALABLE PARALLEL ALGORITHMS AND SOFTWARE FOR LARGE SCALE PROTEOMICS
G. R. Kulkarni (2009)
Mycobacterium smegmati s HtrA Blocks the Toxic Activity of a Putative Cell Wall Amidase Graphical
Katherine J. Wu (2019)
10.1002/jms.1581
The relative influence of phosphorylation and methylation on responsiveness of peptides to MALDI and ESI mass spectrometry.
Jan Gropengiesser (2009)
10.2131/JTS.38.431
Methacarn as a whole brain fixative for gene and protein expression analyses of specific brain regions in rats.
Hirotoshi Akane (2013)
10.1002/cpbi.15
Tempest: Accelerated MS/MS Database Search Software for Heterogeneous Computing Platforms
M. E. Adamo (2016)
10.1145/2483954.2483964
Accelerating tandem MS protein database searches using OpenCL
R. Weber (2012)
10.1109/SAAHPC.2012.20
For Three Easy Payments: Scoring Peptides with Portable Performance Using Specmaster
R. Weber (2012)
10.1002/(SICI)1522-2683(19991201)20:18<3514::AID-ELPS3514>3.0.CO;2-T
Classifying symbiotic proteins from Bradyrhizobium japonicum into functional groups by proteome analysis of altered gene expression levels
P. Dainese-Hatt (1999)
Characterization of Mild Oxidative Stress Response in Human IMR-90 Fibroblasts by Subcellular Quantitative Proteomics
N. O. Baqader (2015)
10.1074/mcp.M200016-MCP200
Alterations in the Mouse and Human Proteome Caused by Huntington’s Disease*
C. Zabel (2002)
10.1142/S0219720005001247
SPIDER: software for protein identification from sequence tags with de novo sequencing error
Yonghua Han (2004)
10.1002/1615-9861(200108)1:8<1033::AID-PROT1033>3.0.CO;2-#
Structural modifications of Methanococcus jannaschii flagellin proteins revealed by proteome analysis
Carol S. Giometti (2001)
10.1016/S0022-1759(00)00278-7
Isolation and rapid identification of an abundant self-peptide from class II HLA-DRB1*0401 alleles induced by measles vaccine virus infection.
I. Ovsyannikova (2000)
10.1074/mcp.M800472-MCP200
Rapid Validation of Mascot Search Results via Stable Isotope Labeling, Pair Picking, and Deconvolution of Fragmentation Patterns*
S. Volchenboum (2009)
10.1074/mcp.M110.001362
Nuclear Matrix Proteome Analysis of Drosophila melanogaster*
Satish Kallappagoudar (2010)
10.1021/pr8009098
Global quantitative proteomic profiling through 18O-labeling in combination with MS/MS spectra analysis.
Carl A. White (2009)
10.1002/rcm.4032
Observations on the detection of b- and y-type ions in the collisionally activated decomposition spectra of protonated peptides.
K. W. Lau (2009)
Evaluation of the Endo-Lysosomal System and the Ubiquitin-Proteasome System in Neurodegenerative Diseases
S. Sjödin (2018)
10.1002/EJI.1830270223
Structural identification of the hematopoietic progenitor antigen ER‐MP12 as the vascular endothelial adhesion molecule PECAM‐1 (CD31)
V. Ling (1997)
10.1002/pmic.200800410
A simple workflow to increase MS2 identification rate by subsequent spectral library search
Erik Ahrné (2009)
10.1002/(SICI)1522-2683(19990101)20:4/5<732::AID-ELPS732>3.0.CO;2-Q
Proteome analysis of polyacrylamide gel‐separated proteins visualized by reversible negative staining using imidazole‐zinc salts
L. Castellanos-Serra (1999)
10.1002/ELPS.1150190603
High sensitivity analysis of proteins and peptides by capillary electrophoresis‐tandem mass spectrometry: Recent developments in technology and applications
D. Figeys (1998)
10.1002/ELPS.1150190614
The identification of peptide modifications derived from gel‐separated proteins using electrospray triple quadrupole and ion trap analyses
K. Swiderek (1998)
10.1016/S1044-0305(97)00282-1
Rapid protein identification using a microscale electrospray LC/MS system on an ion trap mass spectrometer
M. T. Davis (1998)
10.1385/1-59259-584-7:473
Obtaining molecular weights of proteins and their cleavage products by directly combining gel electrophoresis with mass spectrometry.
R. O. Ogorzalek Loo (1999)
10.1201/9781498714006-9
Proteomics for cancer biomarker discovery.
P. Srinivas (2002)
10.1006/ABIO.1998.2809
Protein identification at the low femtomole level from silver-stained gels using a new fritless electrospray interface for liquid chromatography-microspray and nanospray mass spectrometry.
C. L. Gatlin (1998)
10.1074/mcp.M800099-MCP200
Sensitive and Specific Identification of Wild Type and Variant Proteins from 8 to 669 kDa Using Top-down Mass Spectrometry*S
N. M. Karabacak (2009)
10.1002/1522-2683(20000801)21:14<3058::AID-ELPS3058>3.0.CO;2-U
Identification of differentially expressed proteins between human hepatoma and normal liver cell lines by two‐dimensional electrophoresis and liquidchromatography‐ion trap mass spectrometry
L. Yu (2000)
10.1159/000083721
Analysis of the Golden Syrian Hamster Anterior Pituitary Gland Proteome by Ion Trap Mass Spectrometry
C. Blake (2004)
10.1002/(SICI)1522-2683(20000401)21:6<1145::AID-ELPS1145>3.0.CO;2-Z
Protein identification methods in proteomics
K. Gevaert (2000)
See more
Semantic Scholar Logo Some data provided by SemanticScholar