Online citations, reference lists, and bibliographies.

9 – Role Of Ocular Blood Flow In The Pathogenesis Of Glaucoma

Ali S. Hafez, Mark Richard Lesk
Published 2015 · Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
This paper references
10.1016/S0002-9394(14)70374-5
A comparative study of the effects of timolol and latanoprost on blood flow velocity of the retrobulbar vessels.
M. Nicolela (1996)
Retinal hemodynamic effects of carbon dioxide, hyperoxia, and mild hypoxia.
W. Sponsel (1992)
10.1016/J.AJO.2006.02.055
Association of blood pressure status with the optic disk structure in non-glaucoma subjects: the Thessaloniki eye study.
F. Topouzis (2006)
10.1016/J.OPHTHA.2007.03.016
Predictors of long-term progression in the early manifest glaucoma trial.
M. C. Leske (2007)
10.1016/j.survophthal.2008.08.021
The circadian variations in systemic blood pressure, ocular perfusion pressure, and ocular blood flow: risk factors for glaucoma?
A. Werne (2008)
10.1016/S1350-9462(97)00006-2
Optic nerve blood-flow abnormalities in glaucoma
J. Flammer (1998)
Laser Doppler Velocimetry study of the effect of pure oxygen breathing on retinal blood flow.
C. Riva (1983)
10.1007/978-94-009-3325-5_50
Do ocular vasospasms help cause low tension glaucoma
J. Flammer (1987)
10.1136/bjo.75.2.66
Postural studies in pulsatile ocular blood flow: I. Ocular hypertension and normotension.
D. R. Trew (1991)
10.1001/ARCHOPHT.124.11.1568
Relationship between central corneal thickness and changes of optic nerve head topography and blood flow after intraocular pressure reduction in open-angle glaucoma and ocular hypertension.
M. Lesk (2006)
10.1001/archopht.1973.01000040459003
Studies of factors involved in the production of low tension glaucoma.
S. Drance (1973)
10.1007/BF02181185
The relationship between digital and ocular vasospasm
U. Guthauser (2005)
10.1016/0039-6257(94)90058-2
The visual response to increased ocular blood flow in normal pressure glaucoma.
L. Pillunat (1994)
10.1016/S0002-9394(14)72604-2
Retrobulbar arterial hemodynamic effects of betaxolol and timolol in normal-tension glaucoma.
A. Harris (1995)
10.1136/bjo.74.4.196
Biostatistical evidence for two distinct chronic open angle glaucoma populations.
M. Schulzer (1990)
Optic disc blood flow.
Ernest Jt (1976)
10.1136/bjo.50.10.570
Intra-ocular pressure, glaucoma, and glaucoma suspects in a defined population.
F. Hollows (1966)
10.1007/BF00144735
Influence of vasospasm on visual function
P. Gasser (1987)
10.1016/S0002-9394(14)71458-8
Calcium channel blockers in the management of low-tension and open-angle glaucoma.
P. Netland (1993)
10.1016/0002-9394(88)90118-3
Response of blood flow to warm and cold in normal and low-tension glaucoma patients.
S. Drance (1988)
10.1001/archopht.1994.01090170088028
Risk factors for the development of glaucomatous visual field loss in ocular hypertension.
H. Quigley (1994)
10.1001/archopht.1995.01100070092031
Risk factors for open-angle glaucoma. The Barbados Eye Study.
M. C. Leske (1995)
10.1016/S0161-6420(88)33024-1
Nerve Fiver Layer and Optic Disc Fluorescein Defects in Glaucoma and Ocular Hypertension
Katsuhiko Nanba (1988)
10.1016/S0002-9394(01)00964-3
Risk factors for progression of visual field abnormalities in normal-tension glaucoma.
S. Drance (2001)
Peripheral endothelial dysfunction in normal pressure glaucoma.
E. Henry (1999)
10.1111/j.1549-8719.2010.00045.x
Vascular reactivity of optic nerve head and retinal blood vessels in glaucoma--a review.
S. T. Venkataraman (2010)
10.1038/eye.1995.4
Measurement of ocular blood flow velocity using colour doppler imaging in low tension glaucoma
Z. Butt (1995)
10.1038/sj.jhh.1001959
24-h blood pressure monitoring in normal tension glaucoma: night-time blood pressure variability
N. Plange (2006)
10.1097/00061198-199604000-00003
Perfusion of the Juxtapapillary Retina and the Neuroretinal Rim Area in Primary Open Angle Glaucoma
G. Michelson (1996)
10.1016/0039-6257(89)90010-6
Disc hemorrhages in the glaucomas.
S. Drance (1989)
10.1006/exer.1996.0263
Autoregulation of human optic nerve head circulation in response to increased intraocular pressure.
L. Pillunat (1997)
Migraine and low-tension glaucoma. A case-control study.
C. D. Phelps (1985)
10.1001/archopht.1977.04450040064007
Family history in primary open-angle glaucoma.
D. Shin (1977)
10.1136/bjo.61.2.126
Fluorescein angiography in chronic simple and low-tension glaucoma.
R. Hitchings (1977)
10.1007/BF02172894
Papillary circulation dynamics in glaucoma
Y. Robert (2005)
10.1007/BF02280088
Ocular vasospasm: A risk factor in the pathogenesis of low-tension glaucoma
P. Gasser (2005)
10.1111/j.1475-1313.2005.00349.x
Fluorescein filling defects of the optic nerve head in normal tension glaucoma, primary open-angle glaucoma, ocular hypertension and healthy controls.
N. Plange (2004)
10.1023/A:1006113109864
Ambulatory blood pressure monitoring in glaucoma patients. The nocturnal systolic dip and its relationship with disease progression
N. Collignon (2004)
10.1016/S0161-6420(95)30791-9
Early changes in optic disc compliance and surface position in experimental glaucoma.
C. Burgoyne (1995)
10.1136/bjo.77.1.25
Ophthalmic artery flow velocity in glaucomatous and normal subjects.
P. Rojanapongpun (1993)
10.1136/bjo.2004.046755
Increased plasma endothelin-1 levels in patients with progressive open angle glaucoma
M. Emre (2005)
10.1111/j.1442-9071.2012.02768.x
Glaucoma and obstructive sleep apnoea syndrome
Omar S. Faridi (2012)
10.1016/S0161-6420(13)31332-3
Trabeculectomy is associated with retrobulbar hemodynamic changes. A color Doppler analysis.
J. R. Trible (1994)
10.1016/S0002-9394(14)70067-4
Nocturnal arterial hypotension and its role in optic nerve head and ocular ischemic disorders.
S. Hayreh (1994)
10.1016/S0161-6420(95)30792-0
Measurement of optic disc compliance by digitized image analysis in the normal monkey eye.
C. Burgoyne (1995)
10.1016/S0161-6420(00)00138-X
Vascular risk factors for primary open angle glaucoma: the Egna-Neumarkt Study.
L. Bonomi (2000)
10.1167/IOVS.05-0240
Altered endothelin-1 vasoreactivity in patients with untreated normal-pressure glaucoma.
E. Henry (2006)
10.1016/S0161-6420(85)33940-4
Possible significance of cilioretinal arteries in open-angle glaucoma.
Z. Shihab (1985)
10.1136/bjo.78.11.818
Effect of trabeculectomy on pulsatile ocular blood flow.
C. James (1994)
10.1016/S0002-9394(00)00636-X
Assessment of optic disk blood flow in patients with open-angle glaucoma.
O. Findl (2000)
10.1097/00061198-199602000-00005
Peripapillary Focal Retinal Arteriolar Narrowing in Open Angle Glaucoma
S. Rankin (1996)
10.1016/S0002-9394(03)00632-9
Evaluation of optic nerve head and peripapillary retinal blood flow in glaucoma patients, ocular hypertensives, and normal subjects.
A. S. Hafez (2003)
10.1136/bjo.78.6.449
Optic nerve head blood flow using a laser Doppler velocimeter and haemorheology in primary open angle glaucoma and normal pressure glaucoma.
P. Hamard (1994)
10.1136/BJO.2002.008995
Ocular haemodynamic responses to induced hypercapnia and hyperoxia in glaucoma
S. Hosking (2004)
10.1167/IOVS.04-0100
Flicker-evoked response measured at the optic disc rim is reduced in ocular hypertension and early glaucoma.
C. Riva (2004)
10.1001/ARCHOPHT.125.4.494
Altered nitric oxide system in patients with open-angle glaucoma.
K. Polak (2007)
10.1159/000310234
Systemic hypotension: a risk factor for glaucomatous damage?
H. J. Kaiser (1991)
10.1016/S0014-4835(02)00312-3
Regulation of human retinal blood flow by endothelin-1.
K. Polak (2003)
10.1016/S0002-9394(14)70373-3
Scanning Laser Doppler Flowmeter Study of Retinal and Optic Disk Blood Flow in Glaucomatous Patients
M. Nicolela (1996)
10.1097/00061198-199710000-00009
Evaluation of Optic Nerve Head Circulation: Review of the Methods Used
S. Hayreh (1997)
10.1016/S1350-9462(98)00016-0
Retinal and optic nerve head ischemic disorders and atherosclerosis:: Role of serotonin
S. Hayreh (1999)
10.1016/S0161-6420(85)33978-7
Retinal vascular autoregulation in conditions of hyperoxia and hypoxia using the blue field entoptic phenomenon.
T. Fallon (1985)
10.1001/ARCHOPHT.119.12.1819
The prevalence of glaucoma in a population-based study of Hispanic subjects: Proyecto VER.
H. Quigley (2001)
10.3129/i08-060
Endothelin and its potential role in glaucoma.
B. Chauhan (2008)
10.1016/0002-9394(71)91088-9
Diabetes mellitus and primary open-angle glaucoma. The XXVII Edward Jackson Memorial Lecture.
B. Becker (1971)
10.1016/0039-6257(81)90061-8
Optic nerve damage in glaucoma.
D. Minckler (1981)
10.1007/BF02172889
The effect of Ca2+-antagonist on visual field in low-tension glaucoma
Y. Kitazawa (1989)
Regional optic nerve blood flow and its autoregulation.
J. Weinstein (1983)
10.1001/archopht.1977.04450110069003
Optic disc in glaucoma: Topography and extent of fluorescein filling defects.
S. Fishbein (1977)
10.1016/0039-6257(94)90041-8
The vascular concept of glaucoma.
J. Flammer (1994)
10.1007/BF00918484
Optic disc topography and short-term increase in intraocular pressure
Jost Bruno Jonas (1990)
10.1016/S0161-6420(84)34091-X
Retinal autoregulation in open-angle glaucoma.
J. Grunwald (1984)
10.1016/0014-4835(85)90036-3
Blood flow and glucose consumption in the optic nerve, retina and brain: effects of high intraocular pressure.
G. Sperber (1985)
Effects of raised intraocular pressure on retinal, prelaminar, laminar, and retrolaminar optic nerve blood flow in monkeys.
C. Geijer (1979)
10.1016/S0161-6420(92)31991-8
Preservation of nerve fiber layer by retinal vessels in glaucoma.
E. Chihara (1992)
10.1016/j.exer.2008.09.009
Increase in endothelin B receptor expression in optic nerve astrocytes in endothelin-1 induced chronic experimental optic neuropathy.
X. Wang (2009)
10.1016/S0161-6420(95)31053-6
Ambulatory blood pressure monitoring in glaucoma. The nocturnal dip.
S. Graham (1995)
10.1016/S0002-9394(99)00481-X
Interocular difference in progression of glaucoma correlates with interocular differences in retrobulbar circulation.
J. Schumann (2000)
10.1136/bjo.78.8.643
Deformation of the lamina cribrosa by elevated intraocular pressure.
D. Yan (1994)
10.1016/S0002-9394(01)00871-6
Optic nerve blood flow is diminished in eyes of primary open-angle glaucoma suspects.
J. Piltz-seymour (2001)
10.1136/bjo.75.8.466
Pulsatile ocular blood flow in patients with low tension glaucoma.
C. James (1991)
10.1007/BF02174065
Autoregulation of ocular blood flow during changes in intraocular pressure
L. Pillunat (2005)
10.1097/01.icu.0000156135.20570.30
Clinical implications of peripapillary atrophy in glaucoma
J. Jonas (2005)
10.1016/j.ajo.2010.01.018
Blood pressure, perfusion pressure, and glaucoma.
J. Caprioli (2010)
10.1167/IOVS.02-0372
Role of endothelin-1 in choroidal blood flow regulation during isometric exercise in healthy humans.
G. Fuchsjaeger-Mayrl (2003)
10.1016/S1350-9462(01)00014-3
Role of Nitric Oxide in the Control of Ocular Blood Flow
L. Schmetterer (2001)
10.1177/000331979004100306
Do Vasospasms Provoke Ocular Diseases?
P. Gasser (1990)
10.1016/S0161-6420(97)30245-0
Activation of the coagulation cascade in untreated primary open-angle glaucoma.
C. O'Brien (1997)
10.1097/00061198-199712000-00012
Factors Influencing Blood Flow in the Optic Nerve Head
S. Hayreh (1997)
Treatment of progressive normal-tension glaucoma.
Werner Eb (1997)
10.1016/S0002-9394(98)00074-9
A comparison of ocular blood flow in untreated primary open-angle glaucoma and ocular hypertension.
J. Kerr (1998)
10.1001/archopht.1981.03930021042012
Displacement of the optic nerve head. Response to acute intraocular pressure elevation in primate eyes.
N. S. Levy (1981)
Effects of oxygen and carbon dioxide on human retinal circulation.
S. J. Pakola (1993)
10.1016/S0002-9394(14)72771-0
Color Doppler imaging and spectral analysis of the optic nerve vasculature in glaucoma.
S. Rankin (1995)
10.1007/BF00946937
Autoregulation of human optic nerve head blood flow in response to acute changes in ocular perfusion pressure
C. Riva (2004)
Perfusion of the juxtapapillary retina and optic nerve head in acute ocular hypertension.
G. Michelson (1996)
10.1136/bjo.80.10.864
Twenty four hour blood pressure monitoring in normal tension glaucoma.
J. H. Meyer (1996)
10.1001/archopht.1987.01060080068030
A case-control study of risk factors in open angle glaucoma.
M. Wilson (1987)
Detection of disturbed autoregulation of the peripapillary choroid in primary open angle glaucoma.
A. Ulrich (1996)
10.1136/bjo.75.2.71
Postural studies in pulsatile ocular blood flow: II. Chronic open angle glaucoma.
D. R. Trew (1991)
10.1167/iovs.12-9834
Pulsatile movement of the optic nerve head and the peripapillary retina in normal subjects and in glaucoma.
K. Singh (2012)
10.1001/archopht.1983.01040010100018
Effect of elevated intraocular pressure on blood flow. Occurrence in cat optic nerve head studied with iodoantipyrine I 125.
N. Sossi (1983)
10.1136/bjo.80.12.1055
Acute IOP elevation with scleral suction: effects on retrobulbar haemodynamics.
A. Harris (1996)
10.1167/IOVS.06-0615
Circadian fluctuation of mean ocular perfusion pressure is a consistent risk factor for normal-tension glaucoma.
J. Choi (2007)
10.1001/archopht.1994.01090130079022
Family history and risk of primary open angle glaucoma. The Baltimore Eye Survey.
J. Tielsch (1994)
10.1007/BF00917974
Color Doppler imaging in evaluation of optic nerve blood supply in normal and glaucomatous subjects
F. Galassi (2004)
10.1001/archopht.1984.01040030630037
Displacement of optic nerve head in response to short-term intraocular pressure elevation in human eyes.
N. S. Levy (1984)
10.1016/S0039-6257(99)00016-8
Nocturnal hypotension: role in glaucoma progression.
S. Graham (1999)
10.1001/archopht.1995.01100020100038
Hypertension, perfusion pressure, and primary open-angle glaucoma. A population-based assessment.
J. Tielsch (1995)
10.1167/IOVS.04-1459
Retinal vessel diameters and incident open-angle glaucoma and optic disc changes: the Rotterdam study.
M. Ikram (2005)
10.1097/01.ijg.0000185433.71031.90
Correlation Between Finger Blood Flow and Changes in Optic Nerve Head Blood Flow Following Therapeutic Intraocular Pressure Reduction
A. S. Hafez (2005)
10.1089/JOP.1999.15.189
Dorzolamide, visual function and ocular hemodynamics in normal-tension glaucoma.
A. Harris (1999)
10.1016/j.exer.2010.09.002
The complex interaction between ocular perfusion pressure and ocular blood flow - relevance for glaucoma.
D. Schmidl (2011)
10.1167/iovs.08-2882
Impact of systemic blood pressure on the relationship between intraocular pressure and blood flow in the optic nerve head of nonhuman primates.
Y. Liang (2009)
10.1016/J.OPHTHA.2007.03.017
Risk factors for incident open-angle glaucoma: the Barbados Eye Studies.
M. C. Leske (2008)
10.1016/S0002-9394(14)76579-1
Color Doppler analysis of ocular vessel blood velocity in normal-tension glaucoma.
A. Harris (1994)
10.1001/archopht.1979.01020020117005
Multivariate analysis of the risk of glaucomatous visual field loss.
W. Hart (1979)
10.1097/00055735-199404000-00006
Progress in the understanding of the vascular etiology of glaucoma
S. Hayreh (1994)
10.1007/BF02764306
Intraocular pressure effects on optic nerve-head oxidative metabolism measured in vivo
R. Novack (2007)
10.1111/j.1755-3768.2007.01167.x
Endothelial dysfunction in glaucoma
H. Resch (2009)
10.1167/IOVS.05-1053
Effect of nocturnal blood pressure reduction on circadian fluctuation of mean ocular perfusion pressure: a risk factor for normal tension glaucoma.
J. Choi (2006)
The neurologic evaluation of patients with low-tension glaucoma.
J. Corbett (1985)
10.1016/S0161-6420(02)01716-5
Changes in optic nerve head blood flow after therapeutic intraocular pressure reduction in glaucoma patients and ocular hypertensives.
A. S. Hafez (2003)
10.1016/S0002-9394(00)00389-5
The effect of brimonidine tartrate on retinal blood flow in patients with ocular hypertension.
A. M. Carlsson (2000)
10.1007/BF00184278
Effects of high intraocular pressure on the glucose metabolism in the retina and optic nerve in old atherosclerotic monkeys
S. Hayreh (2004)
10.1016/S0002-9394(14)75424-8
Color Doppler imaging in patients with asymmetric glaucoma and unilateral visual field loss.
M. Nicolela (1996)
10.1161/01.CIR.33.2.302
Studies of the Retinal Circulation in Man: Observations on Vessel Diameter, Arteriovenous Oxygen Difference, and Mean Circulation Time
J. Hickam (1966)
10.1136/bjo.71.3.181
Pressure compliance of the optic nerve head in low tension glaucoma.
L. Pillunat (1987)
10.1016/S0002-9394(98)00019-1
Comparison of the effect of latanoprost 0.005% and timolol 0.5% on the calculated ocular perfusion pressure in patients with normal-tension glaucoma.
S. Drance (1998)
Optic nerve and choroidal circulation in glaucoma.
J. Grunwald (1998)
10.1159/000027399
Role of Nocturnal Arterial Hypotension in Optic Nerve Head Ischemic Disorders
S. Hayreh (1999)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar