Online citations, reference lists, and bibliographies.
← Back to Search

Solid Lipid Nanoparticles For Targeted Brain Drug Delivery.

P. Blasi, S. Giovagnoli, A. Schoubben, M. Ricci, C. Rossi
Published 2007 · Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
The present review discusses the potential use of solid lipid nanoparticles for brain drug targeting purposes. The state of the art on surfactant-coated poly(alkylcyanoacrylate) nanoparticles specifically designed for brain targeting is given by emphasizing the transfer of this technology to solid lipid matrices. The available literature on solid lipid nanoparticles and related carriers for brain drug targeting is revised as well. The potential advantages of the use of solid lipid nanoparticles over polymeric nanoparticles are accounted on the bases of a lower cytotoxicity, higher drug loading capacity, and best production scalability. Solid lipid nanoparticles physicochemical characteristics are also particularly regarded in order to address the critical issues related to the development of suitable brain targeting formulations. A critical consideration on the potential application of such technology as related to the current status of brain drug development is also given.
This paper references
10.1016/S0378-5173(99)00421-4
Crystallographic investigation of cetylpalmitate solid lipid nanoparticles.
G. Lukowski (2000)
10.1016/S0168-3659(99)00007-3
Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain.
S. Yang (1999)
10.1016/0378-5173(94)00347-8
Do nanoparticles prepared from lipids solid at room temperature always possess a solid lipid matrix
K. Westesen (1995)
10.1083/JCB.138.4.877
A New Function for the LDL Receptor: Transcytosis of LDL across the Blood–Brain Barrier
B. Dehouck (1997)
10.1016/S0168-3659(97)01653-2
Solid lipid nanoparticles (SLN) as potential carrier for human use: interaction with human granulocytes
R. Mueller (1997)
10.1080/10611860903112842
Brain targeting of nerve growth factor using poly(butyl cyanoacrylate) nanoparticles
K. B. Kurakhmaeva (2009)
10.1023/A:1018983904537
Significant Transport of Doxorubicin into the Brain with Polysorbate 80-Coated Nanoparticles
A. Gulyaev (2004)
Physicochemical investigations on the structure of drug-free and drug-loaded solid lipid nanoparticles (SLN) by means of DSC and 1H NMR.
E. Zimmermann (2005)
10.1016/S0196-9781(97)00474-9
Efficacy of Oral Dalargin-loaded Nanoparticle Delivery across the Blood–Brain Barrier
U. Schroeder (1998)
10.1016/0378-5173(94)90372-7
Uptake of surfactant-coated poly(methyl methacrylate)-nanoparticles by bovine brain microvessel endothelial cell monolayers
G. Borchard (1994)
10.2174/092986706777452461
Delivering drugs to the central nervous system: a medicinal chemistry or a pharmaceutical technology issue?
M. Ricci (2006)
10.1016/J.ADDR.2003.12.002
Solid lipid nanoparticles for parenteral drug delivery.
S. Wissing (2004)
10.1517/17425247.2.2.299
Targeted delivery across the blood–brain barrier
P. Gaillard (2005)
Cell cultures for the assessment of toxicity and uptake of polymeric particulate drug carriers
S. Maassen (1993)
10.1016/S0169-409X(02)00118-7
Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations.
R. Mueller (2002)
10.1201/b14290-4
Tight junctions of the blood-brain barrier
G. Kooij (2005)
10.1023/A:1007045605751
The Choroid Plexuses and the Barriers Between the Blood and the Cerebrospinal Fluid
M. Segal (2004)
10.3171/FOC.2000.8.5.2
Update on therapies for acute ischemic stroke.
D. D. Kindler (2000)
10.1002/JPS.2600720933
Effect of the nonionic surfactant poloxamer 338 on the fate and deposition of polystyrene microspheres following intravenous administration.
S. Illum (1983)
10.1186/1743-8977-3-11
The potential risks of nanomaterials: a review carried out for ECETOC
P. Borm (2006)
Central nervous system dysfunction in acquired immunodeficiency syndrome.
R. Levy (1988)
Introduction Introduction to Nanotechnology
C P Poole (2003)
10.1016/S0378-5173(97)00394-3
Sterilization of unloaded polybutylcyanoacrylate nanoparticles
P. Sommerfeld (1998)
10.2174/1567201053586047
Intranasal drug delivery for brain targeting.
Tushar K Vyas (2005)
10.1016/S0378-5173(01)00882-1
Effect of lipid matrix and size of solid lipid nanoparticles (SLN) on the viability and cytokine production of macrophages.
N. Schöler (2002)
10.1021/JS980302N
Synthesis, stability, and pharmacological evaluation of nipecotic acid prodrugs.
F. Bonina (1999)
10.1016/J.IJPHARM.2006.02.045
Oral bioavailability of cyclosporine: solid lipid nanoparticles (SLN) versus drug nanocrystals.
R. Mueller (2006)
10.1016/S1359-6446(02)02195-5
William Pardridge discusses the lack of BBB research
R. N. Lawrence (2002)
10.1159/000077879
List of Drugs in Development for Neurodegenerative Diseases
F. Fischer (2004)
10.4135/9781412953948.n180
Global burden of disease project at WHO
C. Mathers (2007)
10.1016/j.nbd.2003.12.016
The blood–brain barrier: an overview: Structure, regulation, and clinical implications
P. Ballabh (2004)
10.1016/0169-409X(88)90004-X
Factors affecting the clearance kinetics and tissue distribution of liposomes, microspheres and emulsions
R. Juliano (1988)
10.1016/J.IJPHARM.2005.10.010
Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles.
Donald E. Owens (2006)
10.1124/MI.3.2.90
Blood-brain barrier drug targeting: the future of brain drug development.
W. Pardridge (2003)
10.1002/JPS.10413
Influence of emulsifiers on the crystallization of solid lipid nanoparticles.
H. Bunjes (2003)
10.1023/A:1025065418309
Physicochemical Investigations on Solid Lipid Nanoparticles and on Oil-Loaded Solid Lipid Nanoparticles: A Nuclear Magnetic Resonance and Electron Spin Resonance Study
K. Jores (2004)
Gastrointestinal absorption of idarubicin-loaded solid lipid nanoparticles
A. Bargoni (2000)
Solid lipid nanoparticles ( SLN ) : phagocytic uptake , in vitro cytotoxicity and in vivo biodegradation , 2 nd communication
E. Zimmermann N. Schöler (1999)
10.3109/02652049809008252
11th International Symposium on Microencapsulation
T. L. Whateley (1998)
Nanoparticles
U. Schröder (1996)
10.1016/J.BIOMATERIALS.2006.01.038
Lectin-conjugated PEG-PLA nanoparticles: preparation and brain delivery after intranasal administration.
X. Gao (2006)
10.1080/10611860400015936
Nanoparticle Surface Charges Alter Blood–Brain Barrier Integrity and Permeability
P. Lockman (2004)
Opsonization
D. E. Owens (2006)
10.1016/S0378-5173(02)00688-9
Preparation and purification of cationic solid lipid nanospheres--effects on particle size, physical stability and cell toxicity.
A. V. Heydenreich (2003)
Method for producing solid lipid microspheres having a narrow size distribution
M. R. Gasco (1993)
10.1515/9783111576855-015
J
Seguin Hen (1824)
10.1016/0168-3659(94)90047-7
Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization
C. Schwarz (1994)
10.1016/S0169-409X(01)00105-3
Solid lipid nanoparticles: production, characterization and applications.
W. Mehnert (2001)
10.1016/J.ADDR.2004.07.004
Drug transfer in the choroid plexus. Multiplicity and substrate specificities of transporters
J. Ghersi-Egea (2004)
10.1002/JBM.820241007
In vitro toxicity test of 2-cyanoacrylate polymers by cell culture method.
Y. C. Tseng (1990)
10.1002/ijc.20048
Chemotherapy of glioblastoma in rats using doxorubicin‐loaded nanoparticles
S. C. Steiniger (2004)
10.1023/A:1007026504843
Endothelial Vesicles in the Blood–Brain Barrier: Are They Related to Permeability?
P. Stewart (2004)
Solid lipid nanoparticles — determination of in vivo toxicity
W. Mehnert H. Weyhers (1995)
10.1016/S0378-5173(97)00311-6
Nanosuspensions for the formulation of poorly soluble drugs: I. Preparation by a size-reduction technique
R. Mueller (1998)
From solid lipid nanoparticles (SLN) to nanospoons. Visions and reality of colloidal lipid dispersions
K Jores (2003)
Polyethylene glycol-coated (pegylated) liposomal doxorubicin. Rationale for use in solid tumours.
A. Gabizon (1997)
10.1016/J.BIOMATERIALS.2003.09.087
Specific role of polysorbate 80 coating on the targeting of nanoparticles to the brain.
Wangqiang Sun (2004)
10.1016/J.EJPB.2005.03.006
Characterisation of surface-modified solid lipid nanoparticles (SLN): influence of lecithin and nonionic emulsifier.
M. Schubert (2005)
10.1016/S0378-5173(00)00421-X
Synthesis, pharmacokinetics and anticonvulsant activity of 7-chlorokynurenic acid prodrugs.
F. Bonina (2000)
10.1016/0927-7765(94)80063-4
Thermoanalysis of the recrystallization process of melt-homogenized glyceride nanoparticles
B. Siekmann (1994)
10.1124/jpet.105.097139
Covalent Linkage of Apolipoprotein E to Albumin Nanoparticles Strongly Enhances Drug Transport into the Brain
K. Michaelis (2006)
10.3109/10611860108997929
Interaction of Poly(butylcyanoacrylate) Nanoparticles with the Blood-Brain Barrier in vivo and in vitro
R. N. Alyaudtin (2001)
The role of apolipoprotein on brain uptake of nanoparticles-bound drugs
J. Kreuter (2005)
10.1515/9783111576855-009
D
Saskia Bonjour (1824)
Solid lipid nanoparticles (SLN): phagocytic uptake, in vitro cytotoxicity and in vivo biodegradation
R H Müller (1999)
10.1016/J.BIOCEL.2004.10.004
Astrocytes: regulation of brain homeostasis via apolipoprotein E.
Jillian R. Gee (2005)
10.1016/J.JCONREL.2005.06.006
Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration.
K. Manjunath (2005)
10.1080/10611860600650086
Endocytosis at the blood–brain barrier: From basic understanding to drug delivery strategies
M. Smith (2006)
10.1016/0006-8993(95)01375-X
Nanoparticles, a drug carrier system to pass the blood-brain barrier, permit central analgesic effects of i.v. dalargin injections
U. Schroeder (1996)
10.1016/J.JCONREL.2004.03.004
Hepatic uptake of negatively charged particles in rats: possible involvement of serum proteins in recognition by scavenger receptor.
K. Furumoto (2004)
10.1016/0378-5173(83)90166-7
Pharmacokinetics and Distribution of a Biodegradable Drug-carrier
L. Grislain (1983)
10.1016/S0197-4580(02)00120-3
Metal complexing agents as therapies for Alzheimer’s disease
A. Bush (2002)
10.1145/503124.503146
Introduction
M. Grüninger (2002)
10.1016/0168-3659(92)90127-D
Correlation of the surface hydrophobicity of 14C-poly(methyl methacrylate) nanoparticles to their body distribution
S. Tröster (1992)
10.1074/jbc.270.37.21839
P-glycoprotein
T. Loo (1995)
10.1515/9783111548050-024
M
M. Sankar (1824)
10.1201/9780367810528
Submicron emulsions in drug targeting and delivery
S. Benita (1999)
SOLID LIPID NANOPARTICLES : PHAGOCYTIC UPTAKE, IN VITRO CYTOTOXICITY AND IN VITRO BIODEGRADATION : 1ST COMMUNICATION
R. H. Muller (1999)
10.1002/JPS.20357
Double-coated poly (butylcynanoacrylate) nanoparticulate delivery systems for brain targeting of dalargin via oral administration.
D. Das (2005)
10.1016/J.PHARMTHERA.2004.08.001
Delivery of therapeutic agents to the central nervous system: the problems and the possibilities.
D. Begley (2004)
10.1016/S0169-409X(98)00082-9
Blood-brain barrier permeability to small and large molecules.
Cornford (1999)
10.3109/02652049809006847
Drug retention and stability of solid lipid nanoparticles containing azidothymidine palmitate after autoclaving, storage and lyophilization.
H. Heiati (1998)
10.1006/TAAP.1995.1032
Evaluation of liver toxicological effects induced by polyalkylcyanoacrylate nanoparticles.
R. Fernández-Urrusuno (1995)
10.1016/J.IJPHARM.2006.06.012
Solid lipid nanoparticles incorporated in dextran hydrogels: a new drug delivery system for oral formulations.
M. A. Casadei (2006)
Effects of Alcohol and HIV Infection on the Central Nervous System
D. Meyerhoff (2001)
10.1023/A:1019842024814
Synthesis of Pegylated Immunonanoparticles
J. Olivier (2004)
Thermoanalysis of the recrystallization process of melthomogenized glyceride nanoparticles , Colloids Surf
K. Westesen (2001)
Müller - Goymann , Characterisation of surfacemodified solid lipid nanoparticles ( SLN ) : influence of lecithin and nonionic emulsifier
C. C. M. A. Schubert (2005)
10.1016/S0169-409X(02)00006-6
Progress in understanding the structure-activity relationships of P-glycoprotein.
T. Stouch (2002)
10.1345/1542-6270(2002)36<733B:BDTTFO>2.0.CO;2
Brain Drug Targeting: The Future of Brain Drug Development
R. Dufresne (2002)
10.1016/S0378-5173(01)00944-9
Preparation and characterization of sterile and freeze-dried sub-200 nm nanoparticles.
Y. Konan (2002)
10.1016/S0378-5173(97)04890-4
Investigation of the gel formation of phospholipid-stabilized solid lipid nanoparticles
K. Westesen (1997)
10.1023/A:1010931127745
Long-Circulating PEGylated Polycyanoacrylate Nanoparticles as New Drug Carrier for Brain Delivery
P. Calvo (2004)
On the interactions between pancreatic lipase and colipase and the substrate, and the importance of bile salts.
B. Borgström (1975)
10.1016/S0928-0987(00)00081-6
Preparation and characterization of solid lipid nanospheres containing paclitaxel.
R. Cavalli (2000)
In vitro degradation properties of solid lipid nanoparticles SLN™
C Olbrich (1998)
10.1208/pt070364
Evaluation of alternative strategies to optimize ketorolac transdermal delivery
C. Puglia (2008)
10.2174/157016206777709401
Impact of HIV on regional & cellular organisation of the brain.
J. E. Bell (2006)
10.1590/S0037-86822006000200002
Neurological disease in HIV-infected patients in the era of highly active antiretroviral treatment: a Brazilian experience.
J. D. Oliveira (2006)
10.1016/S0378-5173(99)00428-7
Investigation on the viscoelastic properties of lipid based colloidal drug carriers.
A. Lippacher (2000)
10.1021/LA990856L
Effect of Particle Size on Colloidal Solid Triglycerides
H. Bunjes (2000)
10.1016/S0378-5173(98)00404-9
Enzymatic degradation of SLN-effect of surfactant and surfactant mixtures.
C. Olbrich (1999)
10.1016/J.JCONREL.2003.11.012
Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy.
K. Jores (2004)
10.1111/J.1467-2494.2004.00252_4.X
Comparative study between the viscoelastic behaviors of different lipid nanoparticle formulations.
E. Souto (2004)
10.1016/J.JBIOTEC.2004.06.007
Challenges and solutions for the delivery of biotech drugs--a review of drug nanocrystal technology and lipid nanoparticles.
R. H. Muller (2004)
10.1517/17425247.3.3.419
Drug delivery across the blood–brain barrier: why is it difficult? how to measure and improve it?
Yaming Su (2006)
10.1016/S0168-3659(97)00046-1
Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential
K. Westesen (1997)
10.1016/J.TUBE.2004.11.003
Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis.
R. Pandey (2005)
10.1080/10611860310001615956
Plasma protein adsorption of Tween 80- and poloxamer 188-stabilized solid lipid nanoparticles.
T. Göppert (2003)
Influence of surfactants on the physical stability of solid lipid nanoparticle (SLN) formulations.
M. Uner (2004)
10.1016/0887-2333(88)90035-5
Effects of isobutyl 2-cyanoacrylate polymer on cultured cells derived from murine cerebral microvessels.
H. Vinters (1988)
10.1023/B:PHAM.0000003374.58641.62
In Situ Blood–Brain Barrier Transport of Nanoparticles
J. Koziara (2004)
Sub-micron sized parenteral carrier systems based on solid lipids
B. Siekmann (1992)
Bummer , Physical chemical considerations of lipidbased oral drug delivery — solid lipid nanoparticles
M. P. (2004)
10.1016/S0169-409X(02)00176-X
Pluronic block copolymers as modulators of drug efflux transporter activity in the blood-brain barrier.
A. Kabanov (2003)
10.1023/A:1011042627714
Incorporation of the Model Drug Ubidecarenone into Solid Lipid Nanoparticles
H. Bunjes (2004)
10.1016/0378-5173(95)04286-5
Crystallization tendency and polymorphic transitions in triglyceride nanoparticles
H. Bunjes (1996)
10.1006/PHRS.2001.0813
Transmucosal transport of tobramycin incorporated in solid lipid nanoparticles (SLN) after duodenal administration to rats. Part II--tissue distribution.
A. Bargoni (2001)
10.1006/PHRS.2000.0695
Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after i.v. administration to rats.
A. Fundaró (2000)
Comparison of cytotoxicity between polyester nanoparticles and solid lipid nanoparticles (SLN)
S. Maaβen (1993)
Comparison of cytotoxicity between polyester nanoparticles and solid lipid nanoparticles (SLN), Proc. Int. Symp. Control. Release Bioact. Mater
S Maaβen (1993)
10.1023/A:1018947208597
Indirect Evidence that Drug Brain Targeting Using Polysorbate 80-Coated Polybutylcyanoacrylate Nanoparticles Is Related to Toxicity
J. Olivier (2004)
10.1016/S0169-409X(00)00045-4
The molecular structure of the tight junction.
L. A. Lapierre (2000)
10.1179/016164106X115152
New strategies for repairing the injured spinal cord: the role of stem cells
D. Garbossa (2006)
10.1023/B:DRUG.0000006172.65135.3e
Recent Advances in Brain Tumor Therapy: Local Intracerebral Drug Delivery by Polymers
C. Guérin (2004)
10.1016/0142-9612(89)90062-8
Increased cytotoxicity of nanoparticle-carried Adriamycin in vitro and potentiation by verapamil and amiodarone.
C. Kubiak (1989)
10.1016/0378-5173(86)90021-9
Biodistribution of poly(butyl 2-cyanoacrylate) nanoparticles in rabbits
S. J. Douglas (1986)
10.1002/ELPS.200305690
Alternative sample preparation prior to two‐dimensional electrophoresis protein analysis on solid lipid nanoparticles
T. Göppert (2004)
IMS, World review
(2004)
10.1080/1061186031000086108
In Vitro and In Vivo Study of Solid Lipid Nanoparticles Loaded with Superparamagnetic Iron Oxide
E. Peira (2003)
10.1111/j.1530-0277.1998.tb04389.x
Alcohol as a risk factor for brain damage: neurologic aspects.
J. Neiman (1998)
10.1016/j.neuint.2003.11.006
Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology
N. Abbott (2004)
10.1023/A:1007597508478
Solid State NMR Investigations on Nanosized Carrier Systems
C. Mayer (2004)
10.1016/S0939-6411(01)00233-8
Semisolid SLN dispersions for topical application: influence of formulation and production parameters on viscoelastic properties.
A. Lippacher (2002)
10.1016/J.JCONREL.2005.02.028
Influence of administration route on tumor uptake and biodistribution of etoposide loaded solid lipid nanoparticles in Dalton's lymphoma tumor bearing mice.
L. Harivardhan Reddy (2005)
10.1023/A:1012098005098
Delivery of Loperamide Across the Blood-Brain Barrier with Polysorbate 80-Coated Polybutylcyanoacrylate Nanoparticles
R. Alyautdin (2004)
10.1016/S0378-5173(00)00639-6
The role of plasma proteins in brain targeting: species dependent protein adsorption patterns on brain-specific lipid drug conjugate (LDC) nanoparticles.
A. Gessner (2001)
10.1016/S0378-5173(01)00660-3
Surfactant, but not the size of solid lipid nanoparticles (SLN) influences viability and cytokine production of macrophages.
N. Schöler (2001)
10.1016/J.JCONREL.2005.07.013
Peptide-derivatized biodegradable nanoparticles able to cross the blood-brain barrier.
L. Costantino (2005)
10.1016/J.IJPHARM.2005.08.011
Characterization of indomethacin-loaded lipid nanoparticles by differential scanning calorimetry.
F. Castelli (2005)
10.1002/JPS.2600840420
Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system.
D. Bazile (1995)
10.1080/02652040600612439
Polymorphic behaviour of Compritol®888 ATO as bulk lipid and as SLN and NLC
E. Souto (2006)
10.1016/J.IJPHARM.2005.06.025
Adsorption kinetics of plasma proteins on solid lipid nanoparticles for drug targeting.
T. Göppert (2005)
10.1016/J.EJPB.2005.05.009
Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation.
C. Keck (2006)
10.1016/J.JCONREL.2005.07.024
Targeted nanoparticles for drug delivery through the blood-brain barrier for Alzheimer's disease.
Celeste A. Roney (2005)
10.1080/026520400417685
Effect of solid lipid nanoparticles (SLN) on cytokine production and the viability of murine peritoneal macrophages.
N. Schöler (2000)
10.1126/SCIENCE.297.5584.1116
Breaking Down Barriers
G. Miller (2002)
10.1080/10611860290031877
Apolipoprotein-mediated Transport of Nanoparticle-bound Drugs Across the Blood-Brain Barrier
J. Kreuter (2002)
10.1016/S1359-6446(01)02082-7
Why is the global CNS pharmaceutical market so under-penetrated?
W. Pardridge (2002)
10.1016/S0378-5173(96)04822-3
Sterilization and freeze-drying of drug-free and drug-loaded solid lipid nanoparticles
R. Cavalli (1997)
Nanoparticles
J. Kreuter (1994)
10.1016/S0927-7765(99)00082-X
Potential applications of polymers in the delivery of drugs to the central nervous system
D. Miller (1999)
10.1016/0014-5793(84)80836-4
The organ uptake of intravenously administered colloidal particles can be altered using a non‐ionic surfactant (Poloxamer 338)
L. Illum (1984)
10.1023/A:1015807706530
Macrophage Activation by Polymeric Nanoparticles of Polyalkylcyanoacrylates: Activity Against Intracellular Leishmania donovani Associated with Hydrogen Peroxide Production
R. Gaspar (2004)
10.1023/A:1022604120952
Direct Evidence That Polysorbate-80-Coated Poly(Butylcyanoacrylate) Nanoparticles Deliver Drugs to the CNS via Specific Mechanisms Requiring Prior Binding of Drug to the Nanoparticles
J. Kreuter (2004)
Cytotoxicity of magnetide-loaded polylactide, polylactide/glycolide particles and solid lipid nanoparticles
R H Müller (1996)
10.1186/1477-3155-2-12
Nanoparticles – known and unknown health risks
P. Hoet (2004)
10.1023/A:1011973625803
Pegylated Nanoparticles from a Novel Methoxypolyethylene Glycol Cyanoacrylate-Hexadecyl Cyanoacrylate Amphiphilic Copolymer
M. Peracchia (2004)
10.1016/J.JCONREL.2006.05.010
Solid lipid nanoparticles for enhancing vinpocetine's oral bioavailability.
Yifan Luo (2006)
10.1201/9781420050608.ch2.32
Surfactant의 광범위 이용
오연균 (2003)
From solid lipid nanoparticles (SLN) to nanospoons
K. Jores (2003)
Cytotoxicity of magnetideloaded polylactide , polylactide / glycolide particles and solid lipid nanoparticles
F. Specht
10.1016/J.EJPB.2004.11.011
Polyethylenimine-based non-viral gene delivery systems.
U. Lungwitz (2005)
10.1208/aapsj060323
Etoposide-incorporated tripalmitin nanoparticles with different surface charge: Formulation, characterization, radiolabeling, and biodistribution studies
L. H. Reddy (2008)
10.1016/0006-8993(95)00023-J
Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles)
J. Kreuter (1995)
Surface tension and adsorption
R. Defay (1966)
10.1046/j.1469-7580.2002.00047_13.x
Astrocyte–endothelial interactions and blood–brain barrier permeability
N. Abbott (2002)
10.1002/JPS.10129
Pharmacokinetics and tissue distribution of idarubicin-loaded solid lipid nanoparticles after duodenal administration to rats.
G. Zara (2002)
10.1016/0378-5173(92)90210-S
Alkylcyanoacrylate drug carriers: II. Cytotoxicity of cyanoacrylate nanoparticles with different alkyl chain length
C. Lherm (1992)
10.1080/03639040600640006
The Metabolism of Fatty Alcohols in Lipid Nanoparticles by Alcohol Dehydrogenase
X. Dong (2006)
In vitro degradation properties of solid lipid nanoparticles SLNTM
C. Olbrich (1998)
10.1515/9783111419787-003
H
Yu-Qin Cao (1824)
10.1016/S0142-9612(96)00144-5
Influence of sterilization processes on poly(ε-caprolactone) nanospheres
V. Masson (1997)
10.1055/s-0033-1340488
[Cetylpyridinium chloride].
Oksana Paley (1977)
10.1023/A:1020159331420
Enzymatic Degradation of Dynasan 114 SLN – Effect of Surfactants and Particle Size
C. Olbrich (2002)
10.1016/S0928-0987(97)86243-4
Solid lipid nanoparticles (SLN) for controlled drug delivery
R. Mueller (1996)
10.1136/JNNP.2004.041335
Diseases of the nervous system: patients’ aetiological beliefs
A. Croquelois (2005)
10.1016/S0378-5173(02)00080-7
Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin.
R. Cavalli (2002)
10.1016/S0168-3659(01)00468-0
Surface hydrophobicity of particles is not necessarily the most important determinant in their in vivo disposition after intravenous administration in rats.
K. Ogawara (2001)
10.1016/S0939-6411(00)00087-4
Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art.
R. Mueller (2000)
10.1016/S0169-409X(97)00504-8
Blood-brain barrier function of P-glycoprotein
A. Tsuji (1997)
10.2741/1896
Improving the delivery of therapeutic agents to CNS neoplasms: a clinical review.
M. Badruddoja (2006)
10.3109/02652049209021219
Influence of the surface properties of low contact angle surfactants on the body distribution of 14C-poly(methyl methacrylate) nanoparticles.
S. Tröster (1992)
10.1080/10611860500071292
Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: Comparison of plasma protein adsorption patterns
T. Göppert (2005)
Surface modified solid lipid nanoparticles (SLN) analysis of plasma protein adsorption patterns by two-dimensional polyacrylamide gel electrophoresis (2-D PAGE)
H. Weyhers (2005)
Factor affecting the clearance kinetics and tissue of liposomes, microspheres and emulsions
R L Juliano (1988)
10.1016/0378-5173(87)90044-5
The effects of polyalkylcyanoacrylate nanoparticles on human normal and malignant mesenchymal cells in vitro
E. Gipps (1987)
Surface modelling of microparticles as parenteral systems with high tissue affinity
R. H. Müller (1990)
10.1016/J.JCONREL.2004.07.006
Paclitaxel nanoparticles for the potential treatment of brain tumors.
J. Koziara (2004)
10.1002/(SICI)1097-4547(19980915)53:6<637::AID-JNR1>3.0.CO;2-6
Role of the CNS microvascular pericyte in the blood‐brain barrier
R. Balabanov (1998)
10.1002/jlb.65.4.458
Molecular pathway involved in HIV‐1‐induced CNS pathology: role of viral regulatory protein, Tat
J. Rappaport (1999)
10.2174/157016206777709384
Mechanisms of neuronal injury and death in HIV-1 associated dementia.
M. Kaul (2006)
10.1023/B:JTAN.0000011004.45180.0A
X-ray diffraction/Calorimetry coupling
C. Allais (2003)
10.1208/pt060224
Etoposide-loaded nanoparticles made from glyceride lipids: Formulation, characterization, in vitro drug release, and stability evaluation
L. Harivardhan Reddy (2008)
10.1111/j.2042-7158.1996.tb05893.x
Blood‐brain‐barrier Transport of Lipid Microspheres Containing Clinprost, a Prostaglandin I2 Analogue
T. Minagawa (1996)
10.1016/S0378-5173(00)00562-7
Cellular uptake and cytotoxicity of solid lipid nanospheres (SLN) incorporating doxorubicin or paclitaxel.
A. Miglietta (2000)
10.3109/02652049809006836
Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate 80-coated polybutylcyanoacrylate nanoparticles: an in situ brain perfusion study.
R. Alyautdin (1998)
10.1016/S1537-1891(02)00200-8
Tight junctions of the blood-brain barrier: development, composition and regulation.
H. Wolburg (2002)
10.1016/0378-5173(88)90037-3
Contact angles of surfactants with a potential to alter the body distribution of colloidal drug carriers on poly(methyl methacrylate) surfaces
S. Tröster (1988)
10.1016/0378-5173(96)04539-5
Cytotoxicity of magnetite-loaded polylactide, polylactide/glycolide particles and solid lipid nanoparticles
R. Mueller (1996)
10.1159/000107705
List of Drugs in Development for Neurodegenerative Diseases
V. Pogačić (2007)
10.1080/1061186021000001832
Lipid-Drug-Conjugate (LDC) Nanoparticles as Novel Carrier System for the Hydrophilic Antitrypanosomal Drug Diminazenediaceturate
C. Olbrich (2002)
10.1046/j.1460-9568.2000.00078.x
Polysorbate‐80 coating enhances uptake of polybutylcyanoacrylate (PBCA)‐nanoparticles by human and bovine primary brain capillary endothelial cells
P. Ramge (2000)
10.1016/S0378-5173(97)04885-0
Peptide-loaded solid lipid nanoparticles (SLN): Influence of production parameters
A. J. Almeida (1997)
10.1016/J.ADDR.2003.12.003
Potential role of the low-density lipoprotein receptor family as mediators of cellular drug uptake.
Nancy S Chung (2004)
10.1016/J.ICS.2005.02.014
Application of nanoparticles for the delivery of drugs to the brain
J. Kreuter (2005)
10.1016/J.IJPHARM.2004.02.032
Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery.
E. Souto (2004)
10.1016/0024-3205(87)90138-X
The organ distribution and circulation time of intravenously injected colloidal carriers sterically stabilized with a block copolymer--poloxamine 908.
L. Illum (1987)
10.1038/ncpneuro0263
Cerebral metastases—a therapeutic update
R. Cavaliere (2006)
X-RAY DIFFRACTION / CALORIMETRY COUPLING A tool for polymorphism control
C. Allais (2003)
Evaluation of effect of charge and lipid coating on ability of 60-nm nanoparticles to cross an in vitro model of the blood-brain barrier.
L. Fenart (1999)
Biomarkers in preclinical Alzheimer's disease.
M. Chong (2006)
10.1063/1.459240
The melting behavior of organic materials confined in porous solids
C. Jackson (1990)
10.1517/14712598.1.5.773
Vector-mediated drug delivery to the brain
Jamal Temsamani (2001)
10.1007/3-540-26367-5_1
A
A. Spring (2005)
10.1023/A:1012043315093
Cytotoxicity of Solid Lipid Nanoparticles as a Function of the Lipid Matrix and the Surfactant
R. Mueller (2004)
10.1016/j.addr.2012.09.015
Nanoparticulate systems for brain delivery of drugs.
J. Kreuter (2001)
10.1016/S0142-9612(96)00178-0
Evaluation of hepatic antioxidant systems after intravenous administration of polymeric nanoparticles.
R. Fernández-Urrusuno (1997)
10.1046/j.1471-4159.1998.70051781.x
CNS Drug Design Based on Principles of Blood‐Brain Barrier Transport
W. Pardridge (1998)
10.1034/j.1600-0404.2002.9o188.x
Early psychomotor slowing predicts the development of HIV dementia and autopsy‐verified HIV encephalitis
O. Dunlop (2002)
10.1016/S0378-5173(02)00035-2
Lipase degradation of Dynasan 114 and 116 solid lipid nanoparticles (SLN)--effect of surfactants, storage time and crystallinity.
C. Olbrich (2002)
10.1166/JNN.2003.077
Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain.
J. Kreuter (2004)
10.1016/J.JCONREL.2003.08.006
Brain uptake of thiamine-coated nanoparticles.
P. Lockman (2003)
10.1016/S0168-3659(99)00063-2
Stealth PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting.
M. Peracchia (1999)
10.1016/J.IJPHARM.2005.11.040
Influence of particle size on transport of methotrexate across blood brain barrier by polysorbate 80-coated polybutylcyanoacrylate nanoparticles.
K. Gao (2006)
10.1007/s11095-005-6039-0
Enhanced Prospects for Drug Delivery and Brain Targeting by the Choroid Plexus–CSF Route
C. Johanson (2005)
10.1016/J.IJPHARM.2005.03.031
Colloidal carriers and blood-brain barrier (BBB) translocation: a way to deliver drugs to the brain?
E. García-García (2005)
10.1201/9781498710565
Colloidal Drug Delivery Systems
J. Kreuter (1994)
10.1023/A:1018888927852
Body Distribution of Camptothecin Solid Lipid Nanoparticles After Oral Administration
Shicheng Yang (2004)
10.1177/107327480501200207
Small molecule and monoclonal antibody therapies in neurooncology.
N. Butowski (2005)
10.1023/A:1023492015851
In Vivo and in Vitro Assessment of Baseline Blood-Brain Barrier Parameters in the Presence of Novel Nanoparticles
P. Lockman (2004)
10.1016/j.ddtec.2004.11.014
Prediction of blood-brain barrier permeation in drug discovery from in vivo, in vitro and in silico models.
N. Abbott (2004)
Preparation and characterization of Tween ® 80 coated solid lipid nanoparticles for brain drug targeting , Proc . 13 th Inter
A. Schoubben (2000)
Synthesis of PEGylated immunonanoparticles, Pharm. Res
J C Olivier (2002)
Surface modified solid lipid nanoparticles (SLN) analysis of plasma protein adsorption patterns by two-dimensional polyacrylamide gel electrophoresis
H Weyhers (2005)
Bioadhesion: Possibilities and Future Trends
R. Gurny (1990)
10.1016/S0142-9612(02)00578-1
The production and characteristics of solid lipid nanoparticles (SLNs).
DongZhi Hou (2003)
On the interactions between pancreatic lipase and colipase and the substrate, and the importance of bile salts
Bengt Borgstriim (1975)
10.1201/9780429344688
Pharmaceutical Emulsions and Suspensions
F. Nielloud (2000)
10.1006/PHRS.1999.0509
Pharmacokinetics of doxorubicin incorporated in solid lipid nanospheres (SLN).
G. Zara (1999)
10.1016/S0169-409X(98)00085-4
P-Glycoprotein, a gatekeeper in the blood-brain barrier.
Schinkel (1999)
10.3109/10611869609015973
Phagocytic uptake and cytotoxicity of solid lipid nanoparticles (SLN) sterically stabilized with poloxamine 908 and poloxamer 407.
R. Mueller (1996)
10.4135/9781529728682
動注化学療法における pharmacokinetics と臨床
荒井保明 (1993)
Analgesic activity of the hexapeptide dalargin adsorbed on the surface of polysorbate 80-coated poly(butyl cyanoacrylate) nanoparticles
R. Alyautdin (1995)
X
J. X. Wang (2002)
Mäder , Physicochemical investigations on solid lipid nanoparticles and on oilloaded solid lipid nanoparticles : a nuclear magnetic resonance and electron spin resonance study
W. Mehnert K. Jores (2005)
Method for producing solid lipid microspheres having a narrow size distribution, US Patent No
M R Gasco (1993)
10.1016/S0939-6411(02)00083-8
Enhanced brain targeting by synthesis of 3',5'-dioctanoyl-5-fluoro-2'-deoxyuridine and incorporation into solid lipid nanoparticles.
J. X. Wang (2002)
Apolipoprotein C-I modulates the interaction of apolipoprotein E with beta-migrating very low density lipoproteins (beta-VLDL) and inhibits binding of beta-VLDL to low density lipoprotein receptor-related protein.
K. Weisgraber (1990)
10.1016/J.IJPHARM.2004.07.017
Investigation on the flow behavior of dispersions of solid triglyceride nanoparticles.
A. Illing (2004)
10.1126/SCIENCE.8128245
Biodegradable long-circulating polymeric nanospheres.
R. Gref (1994)
10.1016/S1359-6446(02)02305-X
Sir Richard Sykes contemplates the future of the pharma industry. Interview by Rebecca N Lawrence.
R. N. Lawrence (2002)
10.1021/BC050217O
Development and brain delivery of chitosan-PEG nanoparticles functionalized with the monoclonal antibody OX26.
Y. Aktaş (2005)
10.1177/153303460500400408
Nanotechnology-based Drug Delivery for Cancer
K. Jain (2005)
10.2174/156720106776359230
A review of nanocarrier-based CNS delivery systems.
S. Tiwari (2006)
10.1016/S0378-5173(99)00426-3
Comparison of wax and glyceride solid lipid nanoparticles (SLN).
V. Jenning (2000)
10.1016/S0378-5173(02)00268-5
Incorporation of cyclosporin A in solid lipid nanoparticles (SLN).
E. Ugazio (2002)
10.1016/S0169-409X(03)00041-3
Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications.
C. Vauthier (2003)
10.1016/0378-5173(90)90047-8
Modification of the body distribution of poly(methyl methacrylate) nanoparticles in rats by coating with surfactants
S. Tröster (1990)
Long-circulating and target-specific nanoparticles: theory to practice.
S. Moghimi (2001)
10.1016/J.IJPHARM.2006.06.008
Core-shell type of nanoparticles composed of poly[(n-butyl cyanoacrylate)-co-(2-octyl cyanoacrylate)] copolymers for drug delivery application: synthesis, characterization and in vitro degradation.
C. Huang (2006)
World Health Organization, The Global Burden of Disease Project. http:// www.who.int
P. Blasi (2007)
10.1016/0378-5173(86)90199-7
The effect of hydrophilic coatings on the uptake of colloidal particles by the liver and by peritoneal macrophages
L. Ilium (1986)
Pathfinder technology for the delivery of drugs to the brain
R. H. Müller (2002)
Preparation and characterization of Tween® 80 coated solid lipid nanoparticles for brain drug targeting
P Blasi (2006)
454–477 and rapidly inhibits β-amyloid accumulation in Alzheimer's disease transgenic mice
P Blasi (2001)
10.1023/B:PHAM.0000019291.36636.c1
Structural Characterization of Q10-Loaded Solid Lipid Nanoparticles by NMR Spectroscopy
Sylvia A. Wissing (2004)
10.1016/S0896-6273(01)00317-8
Treatment with a Copper-Zinc Chelator Markedly and Rapidly Inhibits β-Amyloid Accumulation in Alzheimer's Disease Transgenic Mice
R. Cherny (2001)
10.1016/S0378-5173(03)00070-X
Interactions of solid lipid nanoparticles with model membranes and leukocytes studied by EPR.
J. Kristl (2003)
10.1016/S0168-3659(97)00061-8
Influence of the type of surfactant on the analgesic effects induced by the peptide dalargin after its delivery across the blood–brain barrier using surfactant-coated nanoparticles
J. Kreuter (1997)
10.1002/JPS.2600731028
Distribution and elimination of coated polymethyl [2-14C]methacrylate nanoparticles after intravenous injection in rats.
D. Leu (1984)
10.1002/JPS.2600710716
Toxicity of polyalkylcyanoacrylate nanoparticles I: Free nanoparticles.
B. Kante (1982)
10.1016/S1359-6446(03)02827-7
In silico prediction of blood-brain barrier permeation.
D. Clark (2003)
10.1016/0927-7757(94)02743-9
The science and applications of emulsions — an overview
J. Israelachvili (1994)
10.1211/0022357001774976
Biodistribution of Stealth and Non‐stealth Solid Lipid Nanospheres after Intravenous Administration to Rats
Valerio Podio (2000)
10.1016/J.EJPS.2005.10.004
Structural investigations on lipid nanoparticles containing high amounts of lecithin.
M. Schubert (2006)
10.1016/j.brainresrev.2005.07.004
The critical component to establish in vitro BBB model: Pericyte
Char-Huei Lai (2005)
10.1166/JNN.2004.078
Drug delivery to the brain--realization by novel drug carriers.
R. Mueller (2004)
10.1002/CHIN.200502271
Physical Chemical Considerations of Lipid-Based Oral Drug Delivery-Solid Lipid Nanoparticles
P. Bummer (2005)
10.1016/S0168-3659(96)01484-8
Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery
Cunxian Song (1997)
10.1016/S0378-5173(99)00417-2
Influence of high pressure homogenisation equipment on nanodispersions characteristics.
S. Liedtke (2000)
10.1016/S0939-6411(99)00073-9
Increase of the duration of the anticonvulsive activity of a novel NMDA receptor antagonist using poly(butylcyanoacrylate) nanoparticles as a parenteral controlled release system.
A. Friese (2000)
10.1016/S0939-6411(98)00074-5
Correlation between long-term stability of solid lipid nanoparticles (SLN) and crystallinity of the lipid phase.
C. Freitas (1999)
10.1016/j.neuint.2006.03.019
Novel approaches for immunotherapeutic intervention in Alzheimer's disease
V. Vasilevko (2006)
10.1007/978-1-4684-5185-6_10
Targeting of Colloidal Carriers and the Role of Surface Properties
S. Davis (1986)
zurMühlen,W.Mehnert, Solid lipid nanoparticles (SLN) for controlled drug delivery
R.H.Müller (1996)
Solid lipid nanoparticles— determination of in vivo toxicity
H Weyhers (1995)
10.1002/9781119477099.ch1
Introduction to Nanotechnology
伊賀 健一 (2002)
10.1159/000089285
List of Drugs in Development for Neurodegenerative Diseases
Myoung-Ok Kwon (2005)



This paper is referenced by
NUCLEIC ACID DELIVERY
ICK (2015)
10.1016/j.jinorgbio.2020.111271
Modified magnetic core-shell mesoporous silica nano-formulations with encapsulated quercetin exhibit anti-amyloid and antioxidant activity.
E. Halevas (2020)
10.1016/j.biomaterials.2017.06.040
Kinetics-mediate fabrication of multi-model bioimaging lanthanide nanoplates with controllable surface roughness for blood brain barrier transportation.
Peiyuan Wang (2017)
10.1007/978-3-319-99602-8_10
Nanoparticles in Nanomedicine Application: Lipid-Based Nanoparticles and Their Safety Concerns
R. B. S. Mydin (2019)
10.2147/IJN.S16570
Enhanced brain targeting of temozolomide in polysorbate-80 coated polybutylcyanoacrylate nanoparticles
Xin-hua Tian (2011)
Cationic Lipid Nanomedicines for the treatment of Diabetic retinopathy
J. Fangueiro (2015)
10.1016/j.ijpharm.2013.07.034
Chitosan nanoparticles: preparation, size evolution and stability.
A. Rampino (2013)
10.1007/978-3-030-44552-2_8
Nanotechnology Applications to Improve Solubility of Bioactive Constituents of Foods for Health-Promoting Purposes
Silvana Alfei (2020)
10.1016/J.JDDST.2020.102098
Current approaches and prospective drug targeting to brain
Rizwana Khatoon (2020)
10.3109/21691401.2014.909820
Nanostructured lipid carriers as a potential vehicle for Carvedilol delivery: Application of factorial design approach
G. B. Patil (2016)
10.1007/s10856-010-4029-1
Preparation and characterization of amphiphilic poly-N-vinylpyrrolidone nanoparticles containing indomethacin
A. Kuskov (2010)
10.1088/0957-4484/20/5/055702
Preparation, characterization, and anti-tumor property of podophyllotoxin-loaded solid lipid nanoparticles.
R. Zhu (2009)
10.1016/j.ijpharm.2020.119033
Nanostructured lipid carriers-mediated brain delivery of carbamazepine for improved in vivo anticonvulsant and anxiolytic activity.
N. Khan (2020)
10.1088/1361-6528/aa847f
Combined photothermal-chemotherapy of breast cancer by near infrared light responsive hyaluronic acid-decorated nanostructured lipid carriers.
S. Zheng (2017)
10.1016/j.addr.2014.01.008
Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system.
Muna Aryal (2014)
10.2174/1574889808666131128105141
Patents on brain permeable nanoparticles.
Monica Gulati (2013)
FORMULATION OPTIMIZATION BY BOX BEHNKEN STATISTICAL DESIGN AND CHARACTERIZATION OF SAQUINAVIR LOADED SLNS FOR BRAIN DELIVERY
Mudragada Shailaja Prakash V Diwan (2013)
IMMUNONANOPARTICLES A NOVEL APPROACH FOR DRUG DELIVERY
S. Bhattacharya (2017)
10.2147/IJN.S30919
Neurological disorders and therapeutics targeted to surmount the blood–brain barrier
J. Kanwar (2012)
10.1016/J.POWTEC.2009.09.004
Formulation optimization of dihydroartemisinin nanostructured lipid carrier using response surface methodology
X. Zhang (2010)
10.1002/ANGE.201006565
Schleuservermittelter Transport von Wirkstoffen ins Gehirn
Morteza Malakoutikhah (2011)
10.3390/molecules17055564
Fluorescent Nanoprobes Dedicated to in Vivo Imaging: From Preclinical Validations to Clinical Translation
Juliette Mérian (2012)
10.1016/j.ijpharm.2020.119351
PEGylated Solid Lipid Nanoparticles for Brain Delivery of Lipophilic Kiteplatin Pt(IV) Prodrugs: an In Vitro Study.
I. Arduino (2020)
EVALUATION OF THE PHYSICOCHEMICAL PROPERTIES AND STABILITY OF SOLID LIPID NANOPARTICLES DESIGNED FOR THE DELIVERY OF DEXAMETHASONE TO TUMORS
Melissa Howard (2011)
10.2967/jnumed.113.121657
Synthetic Lipid Nanoparticles Targeting Steroid Organs
Juliette Mérian (2013)
10.2147/IJN.S45031
Preparation, characterization, and in vivo pharmacokinetics of nanostructured lipid carriers loaded with oleanolic acid and gentiopicrin
K. Zhang (2013)
10.1517/17425247.2012.696606
Current development in nanoformulations of docetaxel
Q. Tan (2012)
10.1088/0957-4484/26/49/495103
Solid lipid nanoparticles as a vehicle for brain-targeted drug delivery: two new strategies of functionalization with apolipoprotein E.
A. Neves (2015)
10.4172/2157-7439.S7-006
Haloperidol Loaded Solid Lipid Nanoparticles for Nose to Brain Delivery:Stability and In vivo Studies
M. Yasir (2015)
10.1080/22243682.2013.879369
Influence of liquid lipid content on the properties of puerarin-loaded lipid nanoparticles
Xiaofen Hu (2014)
10.2165/0023210-200923010-00003
Getting into the Brain
M. Patel (2009)
10.1007/978-3-030-44552-2
Nano-food Engineering: Volume One
Gustavo V. Barbosa-Cánovas (2020)
See more
Semantic Scholar Logo Some data provided by SemanticScholar