Online citations, reference lists, and bibliographies.
← Back to Search

Clinical Outcomes After Isolated Arthroscopic Single-bundle Posterior Cruciate Ligament Reconstruction.

J. Sekiya, R. West, B. Ong, J. Irrgang, Freddie H. Fu, C. Harner
Published 2005 · Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
PURPOSE The purpose of this study was to evaluate the clinical outcomes after arthroscopic single-bundle posterior cruciate ligament (PCL) reconstruction in patients with isolated grade III PCL injuries. TYPE OF STUDY Retrospective review. METHODS Twenty-one patients who underwent an isolated arthroscopic single-bundle PCL reconstruction for the treatment of a grade III PCL injury between 1989 and 1998 were included in the study. There were 15 male and 6 female patients with an average age of 38 years (range, 20 to 62 years). The length of follow-up was 5.9 years (range, 2.6 to 11 years), and the average time from injury to surgery was 4.5 years (median, 1.3 years; range, 2 weeks to 25 years). All patients completed a subjective evaluation and 14 patients returned for a physical examination and radiographs. One patient underwent an acute reconstruction (<3 weeks), 4 had a subacute (<3 months), and 16 underwent a chronic (>3 months) reconstruction. The anterolateral bundle of the PCL was reconstructed using an Achilles tendon allograft passed through femoral and tibial bone tunnels. RESULTS The overall average Activities of Daily Living Scale (ADLS), Sports Activities Scale (SAS), and SF-36 scores were 79.3, 71.6, and 98 points, respectively. There was a significant difference identified when the ADLS (91.3 v 75.6) and the SAS (90.4 v 65.8) scores of the subacute/acute group were compared with those of the chronic reconstruction group. Using the International Knee Documentation Committee (IKDC) subjective assessment, 57% of the patients had normal/near normal knee function, and 62% had a normal/near normal activity level. The average extension and flexion losses were 1 degrees and 5 degrees , respectively. Instrumented laxity examination revealed that 62% had less than a 3-mm and 31% had a 3- to 5-mm side-to-side difference in corrected posterior displacement. Radiographs at follow-up showed that 75% had normal/near normal findings according to IKDC guidelines. CONCLUSIONS The clinical outcomes after arthroscopic single-bundle PCL reconstruction in this study produced a satisfactory return of function and improvement in symptoms. All patients in this study had improved laxity of at least 1 grade. When compared with chronic reconstructions, acute reconstructions had statistically significant better ADLS and SAS scores. LEVEL OF EVIDENCE IV, case series.
This paper references
10.1053/JARS.2002.32208
Arthroscopic reconstruction of the posterior cruciate ligament: a comparison of quadriceps tendon autograft and quadruple hamstring tendon graft.
C. Chen (2002)
10.1016/S0749-8063(05)80067-2
The posterior cruciate ligament arthroscopic evaluation and treatment.
G. Fanelli (1994)
10.1007/BF01845594
Anatomical and biomechanical characteristics of human meniscofemoral ligaments
T. Kusayama (2005)
10.1177/036354658601400107
Long-term results of nonoperative treatment of isolated posterior cruciate ligament injuries in the athlete
J. M. Parolie (1986)
10.2106/00004623-199305000-00008
The effects of sectioning of the posterior cruciate ligament and the posterolateral complex on the articular contact pressures within the knee.
M. Skyhar (1993)
10.1016/S0749-8063(00)90051-3
Comparison of 1- and 2-incision posterior cruciate ligament reconstructions.
S. Kim (2000)
10.1177/036354659502300617
The Human Posterior Cruciate Ligament Complex: An Interdisciplinary Study
C. Harner (1995)
10.2106/00004623-198870010-00014
Limits of movement in the human knee. Effect of sectioning the posterior cruciate ligament and posterolateral structures.
E. Grood (1988)
10.1097/00003086-199902000-00017
Arthroscopic posterior cruciate ligament reconstruction using a one-incision technique.
S. Kim (1999)
10.1177/036354659602400310
Long-Term Followup of the Untreated Isolated Posterior Cruciate Ligament-Deficient Knee
M. Boynton (1996)
10.2106/00004623-199303000-00010
Direct in vitro measurement of forces in the cruciate ligaments. Part II: The effect of section of the posterolateral structures.
K. Markolf (1993)
10.1177/036354658701500606
Isolated posterior cruciate ligament injuries in athletes
P. Fowler (1987)
10.1053/JARS.2001.21801
A new endoscopic posterior cruciate ligament reconstruction: Minimization of graft angulation.
Y. Ohkoshi (2001)
10.1177/03635465010290020401
A Biomechanical Comparison of Posterior Cruciate Ligament Reconstruction Techniques *
J. Bergfeld (2001)
10.1177/03635465980260051101
Isometry of the Posterior Cruciate Ligament
G. Ortiz (1998)
10.1177/036354659602400105
The Role of the Popliteofibular Ligament in Stability of the Human Knee
D. M. Veltri (1996)
10.2106/00004623-198062020-00013
Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study.
D. Butler (1980)
10.1177/03635465000280020201
Biomechanical Analysis of a Double-Bundle Posterior Cruciate Ligament Reconstruction*
C. Harner (2000)
10.1177/03635465980260032301
Evaluation and Treatment of Posterior Cruciate Ligament Injuries
C. Harner (1998)
10.1097/00005650-199401000-00004
The MOS 36-ltem Short-Form Health Survey (SF-36): III. Tests of Data Quality, Scaling Assumptions, and Reliability Across Diverse Patient Groups
C. Mchorney (1994)
10.1097/00003086-199005000-00031
A simplified approach to the tibial attachment of the posterior cruciate ligament.
R. Burks (1990)
10.1016/S1060-1872(99)80006-9
Double tunnel technique forreconstruction of the posterior cruciate ligament
W. Clancy (1999)
The posterior cruciate ligament injured knee: principles of evaluation and treatment.
M. Miller (1999)
10.2106/00004623-198870030-00010
Use of the quadriceps active test to diagnose posterior cruciate-ligament disruption and measure posterior laxity of the knee.
D. Daniel (1988)
10.1097/00003086-199606000-00033
In Vitro Study of Knee Stability After Posterior Cruciate Ligament Reconstruction
A. Pearsall (1996)
10.1177/03635465000280061101
Two-Bundle Posterior Cruciate Ligament Reconstruction
D. Mannor (2000)
10.2106/00004623-199309000-00014
Injuries of the posterior cruciate ligament.
C. Covey (1993)
10.1177/036354659202000320
Measurements of length and tension patterns during reconstruction of the posterior cruciate ligament
K. Ogata (1992)
10.1302/0301-620X.64B1.7068728
The long-term results of unrepaired tears of the posterior cruciate ligament.
D. Dandy (1982)
10.1016/S0749-8063(97)90029-3
The anatomic origin of the posterior cruciate ligament: where is it? Reference landmarks for PCL reconstruction.
C. Morgan (1997)
Posterior cruciate ligament injuries. New treatment options.
M. Miller (1995)
10.2106/00004623-198365030-00004
Treatment of knee joint instability secondary to rupture of the posterior cruciate ligament. Report of a new procedure.
W. Clancy (1983)
10.1097/00003086-198909000-00030
Natural history of the posterior cruciate ligament-deficient knee.
J. Torg (1989)
10.2106/00004623-198264010-00023
Current concepts review. Patellar pain.
J. Insall (1982)
10.1007/s001670050057
Arthroscopic posterior cruciate ligament reconstruction with bone-tendon-bone patellar graft
P. Mariani (1997)
10.1302/0301-620x.80b1.0800173
PCL reconstruction. In vitro biomechanical comparison of 'isometric' versus single and double-bundled 'anatomic' grafts.
A. Race (1998)
10.2106/00004623-199703000-00009
A Biomechanical Study of Replacement of the Posterior Cruciate Ligament with a Graft. Part I: Isometry, Pre-Tension of the Graft, and Anterior-Posterior Laxity*
K. Markolf (1997)
10.1097/00005650-199303000-00006
The MOS 36‐Item Short‐Form Health Survey (SF‐36): II. Psychometric and Clinical Tests of Validity in Measuring Physical and Mental Health Constructs
C. Mchorney (1993)
10.1016/0021-9290(94)90028-0
The mechanical properties of the two bundles of the human posterior cruciate ligament.
A. Race (1994)
10.1177/036354659302100122
Nonoperatively treated isolated posterior cruciate ligament injuries
P. M. Keller (1993)
10.1053/JARS.2000.9238
Posterior cruciate ligament architecture: evaluation under microsurgical dissection.
C. A. Makris (2000)
10.1177/036354659602400406
Posterior Cruciate Ligament Reconstruction
M. Galloway (1996)
10.1016/S0749-8063(05)80011-8
Posterior cruciate ligament tibial attachment anatomy and radiographic landmarks for tibial tunnel placement in PCL reconstruction.
J. A. Racanelli (1994)
10.1177/03635465000280040401
The Effect of Knee Flexion Angle and Application of an Anterior Tibial Load at the Time of Graft Fixation on the Biomechanics of a Posterior Cruciate Ligament-Reconstructed Knee
C. Harner (2000)
10.1002/JOR.1100060418
Ligament length relationships in the moving knee
J. Sidles (1988)
10.1177/036354658000800203
Posterior cruciate ligament injuries
H. A. Moore (1980)
10.2106/00004623-198264020-00018
An in vitro biomechanical evaluation of anterior-posterior motion of the knee. Tibial displacement, rotation, and torque.
T. Fukubayashi (1982)
10.1016/S1060-1872(99)80007-0
Double bundle posterior cruciate ligament reconstruction technique: University of Pittsburgh Approach
R. S. Petrie (1999)
10.1177/03635465000280011801
Biomechanical Analysis of a Posterior Cruciate Ligament Reconstruction
C. Harner (2000)
10.1177/036354658901700209
Factors affecting the region of most isometric femoral attachments
E. Grood (1989)
10.2106/00004623-199808000-00006
Development of a Patient-Reported Measure of Function of the Knee*
J. Irrgang (1998)
10.1016/0749-8063(95)90091-8
Posterior cruciate ligament tibial inlay reconstruction.
E. Berg (1995)
10.1097/00003086-197501000-00033
The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis.
F. Girgis (1975)
10.2106/00004623-198163030-00006
Arthroscopic examination of the posterior cruciate ligament.
J. Lysholm (1981)
Posterior cruciate ligament anatomy and length-tension behavior of PCL surface fibers.
S. Saddler (1996)
10.1177/036354659602400607
Testing for Isometry During Reconstruction of the Posterior Cruciate Ligament
D. C. Covey (1996)
10.1177/036354659602400214
The Use of a Generic, Patient-Based Health Assessment (SF-36) for Evaluation of Patients with Anterior Cruciate Ligament Injuries
E. Shapiro (1996)
10.1177/03635465980260030901
Determination of the In Situ Forces in the Human Posterior Cruciate Ligament Using Robotic Technology
R. Fox (1998)
10.1177/036354659202000116
Force displacement characteristics of the posterior cruciate ligament
B. R. Bach (1992)
10.1177/03635465990270030201
The Natural History of Acute, Isolated, Nonoperatively Treated Posterior Cruciate Ligament Injuries
K. Shelbourne (1999)
10.2106/00004623-198769020-00010
The role of the posterolateral and cruciate ligaments in the stability of the human knee. A biomechanical study.
D. Gollehon (1987)
10.1177/03635465010290040401
Meniscal Allograft Transplantation
E. Rath (2001)
10.1177/036354659502300411
The Role of the Cruciate and Posterolateral Ligaments in Stability of the Knee
D. M. Veltri (1995)



This paper is referenced by
10.1016/J.RCOT.2010.03.018
Rééducation non agressive après plastie isolée du ligament croisé postérieur : est-ce la solution ?
B. Quelard (2010)
10.1007/978-2-287-99353-4_35
Results of PCL reconstruction
Fabrizio Margheritini (2012)
10.1016/B978-1-4160-3447-6.50069-7
Double-Bundle Posterior Cruciate Ligament Reconstruction
A. Buoncristiani (2008)
10.1177/0363546512439180
The Effect of Proximal Tibial Slope on Dynamic Stability Testing of the Posterior Cruciate Ligament– and Posterolateral Corner–Deficient Knee
F. Petrigliano (2012)
10.1177/0363546507304665
Importance of Tibial Slope for Stability of the Posterior Cruciate Ligament—Deficient Knee
J. Robert Giffin (2007)
solated posterior cruciate ligament reconstruction : s non-aggressive rehabilitation the right protocol ?
B. Sonnery-Cottetb (2010)
10.1007/s00167-018-5035-y
Posterior laxity increases over time after PCL reconstruction
C. Gwinner (2018)
10.1177/0363546517725070
Posterior Cruciate Ligament Reconstruction With Transtibial or Tibial Inlay Techniques: A Meta-analysis of Biomechanical and Clinical Outcomes
D. Y. Lee (2018)
10.5792/ksrr.2013.25.3.126
Proprioception and Clinical Results of Anterolateral Single-Bundle Posterior Cruciate Ligament Reconstruction with Remnant Preservation
Dung Chul Lee (2013)
10.1016/J.RCOT.2010.04.022
La fonction du genou après reconstruction des lésions chroniques isolées du ligament croisé postérieur est-elle normale ? ☆
Antony Wajsfisz (2010)
10.1016/j.csm.2008.10.013
Posterior cruciate ligament reconstruction: Achilles tendon allograft, double bundle.
Andrew D. Heinzelmann (2009)
10.1016/j.arthro.2012.10.019
Does cast immobilization contribute to posterior stability after posterior cruciate ligament reconstruction?
K. H. Yoon (2013)
10.3928/01477447-20150105-50
Biomechanical analysis of posterior cruciate ligament reconstruction with aperture femoral fixation.
Amar B Mutnal (2015)
10.1186/s12891-016-0896-z
A systematic review of double-bundle versus single-bundle posterior cruciate ligament reconstruction
Yan-Song Qi (2016)
10.1007/978-3-642-36801-1_111-1
Allografts in PCL reconstructions
Luiz Augusto Costa da Silva (2013)
10.1007/s00142-006-0361-3
Tibial-inlay-Technik beim hinteren Kreuzbandersatz
K. Benedetto (2006)
10.1016/B978-0-323-32903-3.00016-0
16 – Posterior Cruciate Ligament Injuries: Diagnosis, Operative Techniques, and Clinical Outcomes
F. Noyes (2017)
10.1111/j.1757-7861.2008.00012.x
Single‐bundle posterior cruciate ligament reconstruction with remnant preservation: lateral versus medial‐sided augmentation technique
J. Zhao (2009)
Advances in posterior cruciate ligament reconstruction.
B. Levy (2015)
10.1177/0363546514541225
Posterior Cruciate Ligament Graft Fixation Angles, Part 1
Nicholas I. Kennedy (2014)
10.1177/0363546514568277
Fluoroscopic Determination of the Tibial Insertion of the Posterior Cruciate Ligament in the Sagittal Plane
R. Salim (2015)
10.1177/2325967116660068
Biomechanical Evaluation of Posterior Cruciate Ligament Reconstruction With Quadriceps Versus Achilles Tendon Bone Block Allograft
B. Forsythe (2016)
10.1016/B978-1-4160-5473-3.00143-X
Posterior Cruciate Ligament Injury
Michael Jonathan Salata (2010)
10.2106/JBJS.16.00032
Microstructural and Mechanical Properties of the Posterior Cruciate Ligament: A Comparison of the Anterolateral and Posteromedial Bundles.
Jon O. Wright (2016)
10.1016/j.arthro.2010.08.019
Knee stability after posterior cruciate ligament reconstruction in female versus male patients: a prospective matched-group analysis.
T. Jung (2011)
PCL Reconstruction : Indications , Approach , and Options ”
B. Levy (2016)
10.1097/JSA.0000000000000249
Posterior Cruciate Ligament All-Inside Reconstruction
R. K. Martin (2020)
10.1097/BTK.0B013E31818F6065
Posterior Cruciate Ligament Reconstruction: Two Functional Bundles-1 Femoral Tunnel and One Tibial Tunnel
R. Abdalla (2008)
10.1007/978-2-287-99353-4_32
Techniques in posterior cruciate ligament reconstruction: An arthroscopic approach
B. Forsythe (2012)
10.2298/vsp160615344g
Diagnosis and surgical treatment of the posterior knee instability
Miodrag Glišić (2016)
10.1177/0363546512465169
Anatomic Femoral Tunnels in Posterior Cruciate Ligament Reconstruction
M. Tompkins (2013)
10.2106/JBJS.ST.K.00025
Double-Bundle Posterior Cruciate Ligament Reconstruction Technique with Use of Endoscopic Femoral Graft Placement
Robert F. LaPrade (2012)
See more
Semantic Scholar Logo Some data provided by SemanticScholar