Online citations, reference lists, and bibliographies.

Improved Irrigation Water Demand Forecasting Using A Soft-computing Hybrid Model

Inmaculada Pulido-Calvo, Juan Carlos Gutiérrez-Estrada
Published 2009 · Engineering

Cite This
Download PDF
Analyze on Scholarcy
Share
Recently, Computational Neural Networks (CNNs) and fuzzy inference systems have been successfully applied to time series forecasting. In this study the performance of a hybrid methodology combining feed forward CNN, fuzzy logic and genetic algorithm to forecast one-day ahead daily water demands at irrigation districts considering that only flows in previous days are available for the calibration of the models were analysed. Individual forecasting models were developed using historical time series data from the Fuente Palmera irrigation district located in Andalucia, southern Spain. These models included univariate autoregressive CNNs trained with the Levenberg–Marquardt algorithm (LM). The individual models forecasting were then corrected via a fuzzy logic approach whose parameters were adjusted using a genetic algorithm in order to improve the forecasting accuracy. For the purpose of comparison, this hybrid methodology was also applied with univariate autoregressive CNN models trained with the Extended-Delta-Bar-Delta algorithm (EDBD) and calibrated in a previous study in the same irrigation district. A multicriteria evaluation with several statistics and absolute error measures showed that the hybrid model performed significantly better than univariate and multivariate autoregressive CNNs.
This paper references
Técnicas de predicción a corto plazo de la demanda de agua . Aplicación al uso agrı́cola . [ Short - term forecasting techniques of water demand . Application to agricultural use ]
I Pulido-Calvo (2002)
10.1016/J.AGSY.2007.07.010
Benchmarking and multivariate data analysis techniques for improving the efficiency of irrigation districts: An application in spain
J. A. Rodríguez-Díaz (2008)
10.1061/(ASCE)0733-9437(2003)129:4(247)
Water Delivery System Planning Considering Irrigation Simultaneity
I. Pulido-Calvo (2003)
10.1016/J.BIOSYSTEMSENG.2007.03.003
Linear regressions and neural approaches to water demand forecasting in irrigation districts with telemetry systems
I. Pulido-Calvo (2007)
10.1016/S0925-2312(96)00022-7
Rainfall estimation using artificial neural network group
M. Zhang (1997)
10.1016/0925-5273(96)00039-4
A hybrid econometric--neural network modeling approach for sales forecasting
J. Luxhøj (1996)
Neural-network-based dstep-ahead predictors for nonlinear systems with time delay
Y ; Van Tan (1999)
10.1007/BF00872489
Neural nets for modelling rainfall-runoff transformations
M. Lorrai (1995)
Note on fee lunches and cross-validation
C Goutte (1997)
10.1109/91.388173
A new approach to fuzzy-neural system modeling
Yinghua Lin (1995)
Yield Response to Water. FAO Irrigation and Drainage Paper 33
J Doorenbos (1979)
Estimació n a corto plazo de la temperatura del agua. Aplicació n en sistemas de producció n en medio acuá tico. [Water temperature short-term forecasting. Application in aquaculture systems
Gutié Rrez-Estrada J C ; De Pedro-Sanz (2005)
10.1016/J.JHYDROL.2005.05.012
Impact of mid-Pacific Ocean thermocline on the prediction of Australian rainfall
J. E. Ruiz (2006)
10.1007/s00271-004-0096-8
Evaluating irrigation performance in a Mediterranean environment
I. Lorite (2004)
A Theory for Neural Networks with Time Delays
B. D. Vries (1990)
10.1023/A:1014415503476
Short-Term Water Demand Forecast Modelling at IIT Kanpur Using Artificial Neural Networks
Ashu Jain (2001)
10.1029/95WR01955
Artificial Neural Network Modeling of the Rainfall-Runoff Process
K. Hsu (1995)
Power consumption in West - Bohemia : improved forecasts with decorrelating connectionist networks
S PereiraL (1992)
10.1080/02626669909492272
Applying soft computing approaches to river level forecasting
L. See (1999)
10.1016/J.BIOSYSTEMSENG.2006.08.012
Daily Stream Flow Prediction Capability of Artificial Neural Networks as influenced by Minimum Air Temperature Data
M. Nayebi (2006)
10.1061/(ASCE)1084-0699(2000)5:2(180)
Hydrological Forecasting Using Neural Networks
K. Thirumalaiah (2000)
10.1080/02626669909492288
A real-time combination method for the outputs of different rainfall-runoff models
A. Shamseldin (1999)
10.1016/S0144-8609(00)00046-7
Denitrification in aquaculture systems: an example of a fuzzy logic control problem
P. Lee (2000)
10.1051/lhb/1966034
Calcul des dbits dans les rseaux d'irrigation fonctionnant la demande
R. Clément (1966)
10.1061/(ASCE)1084-0699(1998)3:1(26)
River Stage Forecasting Using Artificial Neural Networks
K. Thirumalaiah (1998)
Rainfall-Runoff Modeling Using Artificial Neural Networks
Jagadeesh Anmala (2010)
10.1007/s00271-004-0095-9
Evaluating irrigation performance in a Mediterranean environment
I. Lorite (2004)
10.1061/(ASCE)0733-9437(2004)130:3(175)
Application of Data Envelopment Analysis to Studies of Irrigation Efficiency in Andalusia
J. A. Rodríguez-Díaz (2004)
10.1016/J.BIOSYSTEMSENG.2005.12.006
A simulation model to generate the demand hydrographs in large-scale irrigation systems
R. Khadra (2006)
10.1016/J.BIOSYSTEMSENG.2006.02.014
Simulation of Runoff and Sediment Yield using Artificial Neural Networks
A. Agarwal (2006)
10.1175/1520-0493(1998)126<0470:EISTPF>2.0.CO;2
Experiments in Short-Term Precipitation Forecasting Using Artificial Neural Networks
R. Kuligowski (1998)
10.1007/978-1-4471-0953-2
Second-Order Methods for Neural Networks
MSc PhD Adrian J. Shepherd BA (1997)
10.1061/(ASCE)0733-9437(2003)129:6(422)
Demand Forecasting for Irrigation Water Distribution Systems
I. Pulido-Calvo (2003)
10.1016/J.BIOSYSTEMSENG.2006.09.003
Reservoir Level Forecasting using Neural Networks: Lake Naivasha
S. Ondimu (2007)
10.1029/1998WR900018
Evaluating the use of “goodness‐of‐fit” Measures in hydrologic and hydroclimatic model validation
D. Legates (1999)
10.1061/(ASCE)0733-9437(2007)133:4(298)
New Methodology to Evaluate Flow Rates in On-Demand Irrigation Networks
Miguel Ángel Moreno (2007)
Power consumption in West-Bohemia: improved forecasts with decorrelating connectionist networks
E ; De Pelikan (1992)
Comparison of staticfeedforward and dynamic-feedbackward neural networks for rainfall–runoff modeling
Y M ; Chang L C Chiang (2004)
Guidelines for predicting crop water requirements
J. Doorenbos (1977)
10.1016/J.AGWAT.2007.09.011
Performance analysis of pressurized irrigation systems operating on-demand using flow-driven simulation models
M. Calejo (2008)
A fuzzy logic model with genetic algorithm for analyzing fish stock – recruitment relationship
M ChiangY (2000)
10.1016/B978-0-08-025675-7.50021-2
Yield response to water
J. Doorenbos (1979)
10.1016/S0954-1810(98)00018-1
Artificial neural networks as applied to long-term demand forecasting
Tawfiq Al-Saba (1999)
10.1623/hysj.51.4.588
Adaptive neural-based fuzzy inference system (ANFIS) approach for modelling hydrological time series
M. Keskin (2006)
Adaptation in natural and artificial systems
J. Holland (1975)
10.1016/S0305-0548(99)00123-9
A simulation study of artificial neural networks for nonlinear time-series forecasting
G. Zhang (2001)
10.1002/IRD.128
Applying benchmarking and data envelopment analysis (DEA) techniques to irrigation districts in Spain
J. Díaz (2004)
Artificial neural network model for subsurface - drained farmland
C YangC (1997)
Neural networks for univariate time series forecasting and their application to water demand prediction
Griñ (1992)
10.1016/0925-2312(95)00021-6
Time series forecasting by combining RBF networks, certainty factors, and the Box-Jenkins model
Donald K. Wedding (1996)
Fuzzy And Neural Approaches In Engineering
L. Tsoukalas (1997)
10.1080/01621459.1967.10482915
Goodness of Fit
H. Riedwyl (1967)
Neuro-Fuzzy and Soft Computing
J. Jang (1997)
10.1061/(ASCE)1084-0699(2000)5:2(145)
Regional Drought Analysis Based on Neural Networks
Hyun-suk Shin (2000)
10.1080/00221689609498476
A neural network model of rainfall-runoff using radial basis functions
J. C. Mason (1996)
10.1002/HYP.5763
Short‐term municipal water demand forecasting
John Bougadis (2005)
Neural networks for univariate time series forecasting and their application to water demand prediction
J Guan (1992)
Comprehensive Assessment of the Freshwater Resources of the World, International Fresh Water Resources: Conflict or Cooperation
Ashok Swain (1997)
10.4319/lo.1996.41.5.0857
Stream hydrological and ecological responses to climate change assessed with an artificial neural network
N. Poff (1996)
10.1002/HYP.6812
Hydrological time‐series modelling using an adaptive neuro‐fuzzy inference system
M. Firat (2008)
10.1016/S0952-1976(98)00043-8
Neural-network-based d-step-ahead predictors for nonlinear systems with time delay
Yonghong Tan (1999)
10.1016/S0925-2312(01)00702-0
Time series forecasting using a hybrid ARIMA and neural network model
G. Zhang (2003)
10.1007/S11269-008-9291-3
Evaluation of Artificial Neural Network Techniques for Municipal Water Consumption Modeling
M. Firat (2009)
10.1021/ac00105a007
Artificial neural networks for estimation of kinetic analytical parameters
S. Ventura (1995)
10.1016/J.FISHRES.2007.06.004
Monthly catch forecasting of anchovy Engraulis ringens in the north area of Chile: Non-linear univariate approach
J. C. Gutiérrez-Estrada (2007)
10.5194/HESS-6-655-2002
Multi-model data fusion for river flow forecasting: an evaluation of six alternative methods based on two contrasting catchments
R. Abrahart (2002)
10.1016/0165-0114(95)00223-5
Input variable identification - fuzzy curves and fuzzy surfaces
Yinghua Lin (1996)
‘ Learning ’ ’ representations by backpropagation errors
L See (1986)
10.1016/S0022-1694(01)00582-0
Forecasting operational demand for an urban water supply zone
S. Zhou (2002)
10.1029/WR016i006p01034
Real‐time forecasting with a conceptual hydrologic model: 2. Applications and results
P. Kitanidis (1980)
10.1029/2004WR003037
Fuzzy exemplar-based inference system for flood forecasting
L. Chang (2005)
10.4995/IA.2002.2622
Técnicas de predicción a corto plazo de la demanda de agua. Aplicación al uso agrícola
I. Calvo (2002)
10.1016/S0378-3774(98)00118-8
Higher performance through combined improvements in irrigation methods and scheduling : a discussion
L. Pereira (1999)
Forecasting models : sophisticated or naı̈ve ?
R McLaughlin (1983)
Forecasting models: sophisticated or naınaı¨ve?
R Mclaughlin (1983)
10.2166/HYDRO.2006.016
A short-term, pattern-based model for water-demand forecasting
S. Alvisi (2006)
10.1016/J.AQUAENG.2004.03.001
Comparison between traditional methods and artificial neural networks for ammonia concentration forecasting in an eel (Anguilla anguilla L.) intensive rearing system
J. C. Gutiérrez-Estrada (2004)
10.1002/HYP.317
An evaluation of a traditional and a neural net modelling approach to flood forecasting for an upland catchment
D. Cameron (2002)
10.2166/HYDRO.1999.0009
Using pruning algorithms and genetic algorithms to optimise network architectures and forecasting inputs in a neural network rainfall-runoff model
R. Abrahart (1999)
A fuzzy logic model with genetic algorithm for analyzing fish stock– recruitment relationship
D G Chen (2000)
Artificial neural network model for subsurface-drained farmland
C C Yang (1997)
10.1016/j.envsoft.2003.03.008
Fuzzy prediction of the algal blooms in the Orbetello lagoon
S. Marsili-Libelli (2004)
Combined Neural Networks for Time Series Analysis
I. Ginzburg (1993)
10.1016/J.BIOSYSTEMSENG.2006.09.002
On-farm Sprinkler Irrigation Performance as affected by the Distribution System
N. Lamaddalena (2007)
10.1016/J.JHYDROL.2003.12.033
Comparison of static-feedforward and dynamic-feedback neural networks for rainfall -runoff modeling
Yen-Ming Chiang (2004)
10.1139/F00-141
A fuzzy logic model with genetic algorithm for analyzing fish stock-recruitment relationships
Ding-Geng Chen (2000)
10.1038/323533a0
Learning representations by back-propagating errors
D. Rumelhart (1986)
10.1061/(ASCE)0733-9437(2007)133:4(368)
Adaptive Neurofuzzy Computing Technique for Evapotranspiration Estimation
O. Kisi (2007)
10.1016/b978-1-55860-637-1.x5013-9
Illustrating Evolutionary Computation with Mathematica
C. Jacob (2001)
10.1016/S0098-3004(00)00136-9
Multi-model data fusion for hydrological forecasting
L. See (2001)
10.4995/IA.2005.2553
ESTIMACIÓN A CORTO PLAZO DE LA TEMPERATURA DEL AGUA. APLICACIÓN EN SISTEMAS DE PRODUCCIÓN EN MEDIO ACUÁTICO
J. C. Estrada (2005)
Irrigation par Aspersion et Ré seaux Collectifs de Distribution Sous Pression. Editions Eyrolles
R Clé Ment (1979)
10.1016/S0165-7836(98)00118-0
Analysis and prediction of walleye pollock (Theragra chalcogramma) landings in Korea by time series analysis
Hae-Hoon Park (1998)
Fuzzy Engineering
B. Kosko (1996)
10.1016/0378-3774(88)90148-5
Improving irrigation management by modelling the irrigation schedule
P. V. Aelst (1988)
10.1080/02626660009492354
A hybrid multi-model approach to river level forecasting
L. See (2000)
10.1029/93WR01494
OPTIMIZATION OF GROUNDWATER REMEDIATION USING ARTIFICIAL NEURAL NETWORKS WITH PARALLEL SOLUTE TRANSPORT MODELING
L. L. Rogers (1994)
10.1016/J.JHYDROL.2004.03.027
Improved streamflow forecasting using self-organizing radial basis function artificial neural networks
H. Moradkhani (2004)
Water futures: assessment of long-range patterns and problems. Comprehensive assessment of the freshwater resources of the world
P. Raskin (1997)
Note on fee lunches and cross - validation
R Griñó (1997)
10.1162/neco.1997.9.6.1245
Note on Free Lunches and Cross-Validation
Cyril Goutte (1997)
10.1016/0022-1694(95)02918-4
Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data
P. Yapo (1996)
10.1061/(ASCE)1084-0699(2000)5:2(156)
PRECIPITATION-RUNOFF MODELING USING ARTIFICIAL NEURAL NETWORKS AND CONCEPTUAL MODELS
A. Tokar (2000)
10.5860/choice.27-0936
Genetic Algorithms in Search Optimization and Machine Learning
D. Goldberg (1988)
10.1061/(ASCE)0733-9437(1997)123:4(285)
Artificial Neural Network Model for Subsurface-Drained Farmlands
Chun-Chieh Yang (1997)
10.1002/1099-1085(20000815/30)14:11/12<2157::AID-HYP57>3.0.CO;2-S
Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments
R. Abrahart (2000)
10.1061/(ASCE)1084-0699(2005)10:1(85)
Evaluation of Neural Network Streamflow Forecasting on 47 Watersheds
F. Anctil (2005)
10.1162/neco.1997.9.6.1211
On Bias Plus Variance
D. Wolpert (1997)
10.1061/(ASCE)1084-0699(2005)10:5(386)
Remediation System Design with Multiple Uncertain Parameters Using Fuzzy Sets and Genetic Algorithm
J. Guan (2005)
10.1002/IRD.126
Benchmarking performance in the irrigation and drainage sector: a tool for change
H. Malano (2004)
Té cnicas de predicció n a corto plazo de la demanda de agua. Aplicació n al uso agrícola. [Short-term forecasting techniques of water demand. Application to agricultural use
R Pulido-Calvo I ; Roldá N J ; Ló Pez-Luque (2002)
Learning'' representations by backpropagation errors
D E Rumelhart (1986)
10.1016/0022-1694(92)90046-X
Rainfall forecasting in space and time using a neural network
M. French (1992)
10.1016/0022-1694(70)90255-6
River flow forecasting through conceptual models part I — A discussion of principles☆
J. Nash (1970)
10.1016/J.JHYDROL.2006.06.015
Application of neural approaches to one-step daily flow forecasting in Portuguese watersheds
I. Pulido-Calvo (2007)
Economía y política de gestión del agua en la agricultura
J. M. S. Viñas (1998)
Crop evapotranspiration. Guidelines for computing crop water requirements
R. Allen (1998)



This paper is referenced by
10.1080/19942060.2015.1004821
Efficient methods for prediction of velocity fields in open channel junctions based on the artifical neural network
Amir Hossein Zaji (2015)
10.1016/J.APOR.2015.09.001
Forecasting of chlorophyll-a concentrations in South San Francisco Bay using five different models
T. Rajaee (2015)
10.1080/0952813X.2012.680071
A new suggestion for an irrigation schedule with an artificial neural network
Naim Karasekreter (2013)
10.1007/s13201-015-0282-2
A comparative study of shallow groundwater level simulation with three time series models in a coastal aquifer of South China
Qingchun Yang (2015)
10.1007/s00271-010-0224-6
Assessment of a 4-input artificial neural network for ETo estimation through data set scanning procedures
Pau Martí (2010)
10.1109/ICSITECH.2016.7852618
Implementation of Moving Average and Soft Computing algorithm to support planting season calendar forecasting system on mobile device
Fhira Nhita (2016)
10.1016/J.APT.2018.09.032
An Evaluation of Machine Learning and Artificial Intelligence Models for Predicting the Flotation Behavior of Fine High-Ash Coal
Danish Ali (2018)
High Resolution Multi-Spectral Imagery and Learning Machines in Precision Irrigation Water Management
Leila Hassan-Esfahani (2015)
Optimum management of pressurized irrigation networks at different scales using Artificial Intelligent techniques
R. González Perea (2017)
10.1007/978-3-319-70093-9
Neural Information Processing
D. Liu (2017)
10.1016/J.AGWAT.2014.09.015
Forecasting furrow irrigation infiltration using artificial neural networks
Mohamed Abdelbari Mattar (2015)
Evaluating the Performance of Several Data Mining Methods for Predicting Irrigation Water Requirement
Mahmood A. Khan (2012)
Short-term system scale demand forecasting for a modernized irrigation system using real-time flow data and numerical weather predictions
K. C. Perera (2015)
10.1061/(ASCE)WR.1943-5452.0000177
Hybrid Water Demand Forecasting Model Associating Artificial Neural Network with Fourier Series
Frederico Keizo Odan (2012)
10.1061/(ASCE)IR.1943-4774.0000489
Machine learning approaches for error correction of hydraulic simulation models for canal flow schemes
Alfonso Faustino Torres-Rua (2012)
10.1007/s11069-013-0716-9
Forecasting of meteorological drought using Wavelet-ANFIS hybrid model for different time steps (case study: southeastern part of east Azerbaijan province, Iran)
Bagher Shirmohammadi (2013)
10.1061/(ASCE)HE.1943-5584.0000824
Bayesian Artificial Intelligence Model Averaging for Hydraulic Conductivity Estimation
A. A. Nadiri (2014)
A Review of Intelligent Practices for Irrigation Prediction
Hans Krupakar (2016)
10.1016/J.JHYDROL.2019.02.011
Formulating a strategy to combine artificial intelligence models using Bayesian model averaging to study a distressed aquifer with sparse data availability
Marjan Moazamnia (2019)
10.22266/IJIES2017.1031.01
Application of Neural Modeling and the SPI Index for the Prediction of Weather Drought in the Saïss Plain (Northern Morocco)
Abdelhamid Ibrahimi (2017)
10.1007/s11269-011-9962-3
Mapping Urban Water Demands Using Multi-Criteria Analysis and GIS
G. Panagopoulos (2012)
10.1016/J.AGWAT.2012.10.025
Optimal water allocation in irrigation networks based on real time climatic data
Masoud Parsinejad (2013)
10.4995/IA.2014.3077
Visión del regadío
Fernando Braz-Tangerino (2014)
Web Based Decision Support System Using Geoinformatics Techniques for Irrigation Water Management in a Near Real Time Environment .
M. Khan (2015)
Water implications in Mediterranean irrigation networks: Problems and solutions
Laura Ester Romero Marrero (2017)
10.1002/IRD.2233
Comparison between Clément's First Formula and Other Statistical Distributions in A Real Irrigation Network
Modesto Pérez-Sánchez (2018)
A PREDICTIVE ANALYTICAL APPROACH TOWARDS IMPROVING THE CROP GROWTH YIELD USING FUZZY COGNITIVE MAPS – CROYAN
G. Anantharaj (2015)
10.1007/s10661-017-6030-3
Water demand forecasting: review of soft computing methods
Iman Ghalehkhondabi (2017)
10.1007/978-3-319-18422-7_30
Forecasting Daily Urban Water Demand Using Dynamic Gaussian Bayesian Network
Wojciech Froelich (2015)
10.1007/978-3-319-34099-9_49
Daily Urban Water Demand Forecasting - Comparative Study
Wojciech Froelich (2016)
10.2166/AQUA.2019.145
Evolutionary modelling of municipal water demand with multiple feature selection techniques
Oluwaseun Oyebode (2019)
10.1016/J.JHYDROL.2011.06.013
A wavelet neural network conjunction model for groundwater level forecasting
J. Adamowski (2011)
See more
Semantic Scholar Logo Some data provided by SemanticScholar