Online citations, reference lists, and bibliographies.
Referencing for people who value simplicity, privacy, and speed.
Get Citationsy
← Back to Search

The Role Of Transition Metal Interfaces On The Electronic Transport In Lithium–air Batteries

J. Chen, J. Hummelshøj, K. Thygesen, J. S. G. Mýrdal, J. Nørskov, T. Vegge
Published 2011 · Chemistry

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
Abstract Low electronic conduction is expected to be a main limiting factor in the performance of reversible lithium–air, Li–O2, batteries. Here, we apply density functional theory and non-equilibrium Green's function calculations to determine the electronic transport through lithium peroxide, Li2O2, formed at the cathode during battery discharge. We find the transport to depend on the orientation and lattice matching of the insulator–metal interface in the presence of Au and Pt catalysts. Bulk lithium vacancies are found to be available and mobile under battery charging conditions, and found to pin the Fermi level at the top of the anti bonding peroxide π*(2px) and π*(2py) levels in the Li2O2 valence band. Under an applied bias, this can result in a reduced transmission, since the anti bonding σ*(2pz) level in the Li2O2 conduction band is found to couple strongly to the metal substrate and create localized interface states with poor coupling to the Li2O2 bulk states. These observations provide a possible explanation for the higher overpotential observed for charging than discharge.
This paper references
Alarming rise in fog and pollution causing a fall in maximum temperature over Delhi
R. Jenamani (2007)
10.1149/1.2131827
Ether-Based Electrolytes for the Lithium/Oxygen Organic Electrolyte Battery
J. Read (2006)
10.1016/J.CHEMPHYS.2005.05.032
Molecular transport calculations with Wannier functions
K. Thygesen (2005)
10.1063/1.3298994
Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery.
J. Hummelshøj (2010)
10.1103/PHYSREVLETT.101.236806
Conductance of sidewall-functionalized carbon nanotubes: universal dependence on adsorption sites.
J. M. García-Lastra (2008)
10.1002/anie.200702505
Nanomaterials for rechargeable lithium batteries.
P. Bruce (2008)
10.1021/nl8036323
Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes.
Li-feng Cui (2009)
10.1103/PHYSREVLETT.68.2512
Landauer formula for the current through an interacting electron region.
Meir (1992)
10.1021/JA056811Q
Rechargeable LI2O2 electrode for lithium batteries.
Takeshi Ogasawara (2006)
10.1109/5992.998641
An object-oriented scripting interface to a legacy electronic structure code
S. R. Bahn (2002)
10.1149/1.2793594
Effect of Catalyst on the Performance of Rechargeable Lithium/Air Batteries.
A. Débart (2007)
10.1103/PHYSREVLETT.85.3866
Determination of the of rate cross slip of screw dislocations
Vegge (2000)
10.1103/PhysRevB.80.195112
Localized atomic basis set in the projector augmented wave method
A. H. Larsen (2009)
10.1021/CR020731C
Lithium batteries and cathode materials.
M. Whittingham (2004)
10.1149/1.3256129
A Solid-State, Rechargeable, Long Cycle Life Lithium-Air Battery (Postprint)
B. Kumar (2010)
10.1103/PHYSREVLETT.77.3865
Generalized Gradient Approximation Made Simple.
Perdew (1996)
10.1103/PHYSREV.136.B864
THE INHOMOGENEOUS ELECTRON GAS.
P. Hohenberg (1964)
10.1016/0025-5408(83)90138-1
Lithium insertion into manganese spinels
M. M. Thackeray (1983)
10.1103/PHYSREVB.59.7413
Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals
B. Hammer (1999)
10.1038/451652a
Building better batteries
M. Armand (2008)
10.1021/NL0727157
High capacity Li ion battery anodes using ge nanowires.
C. Chan (2008)
10.1038/35104644
Issues and challenges facing rechargeable lithium batteries
J.-M. Tarascon (2001)
10.1063/1.555993
NIST–JANAF Thermochemical Tables for the Bromine Oxides
M. W. Chase (1996)
10.1016/J.JPOWSOUR.2009.08.088
Discharge characteristic of a non-aqueous electrolyte Li/O2 battery
S. Zhang (2010)
10.1021/JP808945Y
Combinatorial Density Functional Theory-Based Screening of Surface Alloys for the Oxygen Reduction Reaction
J. Greeley (2009)
10.1103/REVMODPHYS.62.251
Reaction-rate theory: fifty years after Kramers
P. Hänggi (1990)
10.1007/S10008-009-0791-8
The effect of oxygen pressures on the electrochemical profile of lithium/oxygen battery
Xin-hui Yang (2009)
10.1103/PhysRevB.71.035109
Real-space grid implementation of the projector augmented wave method
J. J. Mortensen (2005)
10.1088/0957-4484/20/44/445703
Ab initio thermodynamics of lithium oxides: from bulk phases to nanoparticles.
N. Seriani (2009)
10.1103/PhysRevLett.94.036807
Conduction mechanism in a molecular hydrogen contact.
K. Thygesen (2005)
10.1103/PhysRevB.65.165401
Density-functional method for nonequilibrium electron transport
M. Brandbyge (2002)
10.1021/ja1036572
Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries.
Y. Lu (2010)
10.1063/1.2894544
Influence of functional groups on charge transport in molecular junctions.
D. J. Mowbray (2008)
10.1103/PHYSREVB.50.17953
Projector augmented-wave method.
Blöchl (1994)
10.1149/1.1836378
A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery
K. M. Abraham (1996)
10.1063/1.3447381
O2 reduction by lithium on Au(111) and Pt(111).
Y. Xu (2010)
10.1063/1.480097
A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives
G. Henkelman (1999)
NIST-JANAF Thermochemical Tables Fourth Edition
M. W. Chase (1998)
10.1088/0953-8984/22/25/253202
Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method.
J. Enkovaara (2010)
10.1016/J.ELECTACTA.2008.03.014
Gold model anodes for Li-ion batteries: Single crystalline systems studied by in situ X-ray diffraction
F. Renner (2008)
10.1016/0009-2614(80)80396-4
Convergence acceleration of iterative sequences. the case of scf iteration
P. Pulay (1980)
10.1021/JP908090S
Elucidating the Mechanism of Oxygen Reduction for Lithium-Air Battery Applications
Cormac O. Laoire (2009)
10.1103/PhysRevLett.91.146801
Four-atom period in the conductance of monatomic Al wires.
K. Thygesen (2003)
10.1016/J.JPOWSOUR.2007.06.180
An O2 cathode for rechargeable lithium batteries: The effect of a catalyst
A. Débart (2007)
10.1103/PHYSREV.140.A1133
Self-Consistent Equations Including Exchange and Correlation Effects
W. Kohn (1965)
10.1149/1.3363047
The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li–Oxygen Batteries
Y. Lu (2010)
10.1149/1.3290735
Bimetallic Ru Electrocatalysts for the OER and Electrolytic Water Splitting in Acidic Media
Rhys Forgie (2010)
10.1002/ADFM.200701245
High Energy Density All-Solid-State Batteries: A Challenging Concept Towards 3D Integration**
Loïc Baggetto (2008)
10.1021/JZ1005384
Lithium−Air Battery: Promise and Challenges
G. Girishkumar (2010)
10.1023/A:1017258823035
Book Review: Classical and Quantum Dynamics in Condensed Phase Simulations
B. J. Berne (1998)
10.1016/0025-5408(80)90012-4



This paper is referenced by
10.1039/C2CP42768K
Lithium oxides precipitation in nonaqueous Li-air batteries.
Junbo Hou (2012)
10.1016/J.RSER.2016.08.039
The environmental impact of Li-Ion batteries and the role of key parameters – A review
Jens F Peters (2017)
10.1021/CS300036V
Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective
Yuyan Shao (2012)
10.1021/ACS.JPCC.5B04432
Role of Li2O2@Li2CO3 Interfaces on Charge Transport in Nonaqueous Li–Air Batteries
Y. S. Mekonnen (2015)
10.1021/cr400573b
Aprotic and aqueous Li-O₂ batteries.
Jun Lu (2014)
10.1016/J.ENSM.2017.12.020
Research progresses on materials and electrode design towards key challenges of Li-air batteries
Sixie Yang (2018)
10.1002/BATT.201900010
Understanding Rechargeable Li−O2 Batteries via First‐Principles Computations
X. Zhang (2019)
10.1149/2.118309JES
Cobalt Phthalocyanine Catalyzed Lithium-Air Batteries
Matthew Trahan (2013)
10.1021/jp308929a
Electronic Structure Modeling of Electrochemical Reactions at Electrode/Electrolyte Interfaces in Lithium Ion Batteries
Kevin Leung (2012)
10.3390/EN6116016
Recent Research Progress on Non-aqueous Lithium-Air Batteries from Argonne National Laboratory
J. Lu (2013)
10.1021/ACS.JPCC.5B06492
Adsorption and Deposition of Li2O2 on the Pristine and Oxidized TiC Surface by First-principles Calculation
Z. Wang (2015)
10.1016/J.NANOEN.2012.11.014
Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium–air batteries
Jiajun Wang (2013)
10.1039/c3cp00069a
Evidence for lithium superoxide-like species in the discharge product of a Li-O2 battery.
J. Yang (2013)
10.1002/adma.201804587
Understanding the Reaction Chemistry during Charging in Aprotic Lithium-Oxygen Batteries: Existing Problems and Solutions.
Chaozhu Shu (2019)
10.6000/1929-6002.2013.02.04.1
Review on air cathode in Li-air batteries
WQ Han (2013)
10.1021/CM401720N
A Facile Mechanism for Recharging Li2O2 in Li–O2 Batteries
Shinyoung Kang (2013)
10.1063/1.4869212
Communication: the influence of CO2 poisoning on overvoltages and discharge capacity in non-aqueous Li-Air batteries.
Y. S. Mekonnen (2014)
10.1088/0957-4484/26/16/164003
Pd nanoparticles on ZnO-passivated porous carbon by atomic layer deposition: an effective electrochemical catalyst for Li-O2 battery.
Xiangyi Luo (2015)
Fundamental mechanisms in Li-air battery electrochemistry
Jonathan Højberg (2015)
10.1117/12.2303688
Impact of point defects on electrochromism in WO3
W. Wang (2018)
10.1002/ADFM.201404197
Electrical Transport and Oxygen Exchange in the Superoxides of Potassium, Rubidium, and Cesium
Oliver Gerbig (2015)
10.1021/ACS.JPCC.5B04950
Instability of Ionic Liquid-Based Electrolytes in Li–O2 Batteries
S. Das (2015)
10.1021/JP3107809
DFT+U Study of Polaronic Conduction in Li2O2 and Li2CO3: Implications for Li–Air Batteries
J. M. García-Lastra (2013)
10.1016/J.CARBON.2014.12.104
Reduced graphene oxide for Li-air batteries: The effect of oxidation time and reduction conditions for graphene oxide
M. Storm (2013)
10.5229/JECST.2014.5.1.1
Practical Challenges Associated with Catalyst Development for the Commercialization of Li-air Batteries
Myounggu Park (2014)
10.1021/jz501775a
Adsorption and Deposition of Li2O2 on TiC{111} Surface.
Z. Wang (2014)
10.1039/C4RA02165G
A novel aluminium–Air rechargeable battery with Al2O3 as the buffer to suppress byproduct accumulation directly onto an aluminium anode and air cathode
R. Mori (2014)
10.1039/C5EE01215E
Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S
R. Younesi (2015)
10.1039/c1cs15228a
Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts.
Fangyi Cheng (2012)
10.1149/2.086202JES
A Critical Review of Li/Air Batteries
J. Christensen (2011)
10.1149/2.011301JES
Effect of Carbon Surface Area on First Discharge Capacity of Li-O2 Cathodes and Cycle-Life Behavior in Ether-Based Electrolytes
S. Meini (2012)
10.1002/FUCE.201600092
Electrochemical Properties of Al–based Solid Solutions Alloyed by Element Mg, Ga, Zn and Mn under the Guide of First Principles
Y. Yi (2017)
See more
Semantic Scholar Logo Some data provided by SemanticScholar