Online citations, reference lists, and bibliographies.
← Back to Search

A Phosphorus Lewis Super Acid: η5-Pentamethylcyclopentadienyl Phosphorus Dication

Jiliang Zhou, L. Liu, Levy L Cao, D. Stephan
Published 2018 · Chemistry

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
Summary Abstraction of chloride from (Cp*PCl2) with the silylium salt [Et3Si][B(C6F5)4] afforded [(η2-Cp*)PCl][B(C6F5)4] (1), whereas further chloride abstraction using another equivalent [Et3Si][B(C6F5)4] was unsuccessful. The corresponding species [(η2-Cp*)PF][B(C6F5)4] (2) was derived by fluoride abstraction from (Cp*PF2). Treatment of (Cp*PF2) with 2 equiv of [Et3Si][B(C6F5)4] gave [(η5-Cp*)P][B(C6F5)4]2 (3), representing an η5-Cp that is bound to phosphorus. 3 behaves as a phosphorus-based Lewis super acid, abstracting fluoride from [SbF6]− anion with concurrent η5-η2-Cp* rearrangement to give 2. Similarly, the extremely high Lewis acidity and chlorophilicity of 3 is indicated by the equilibration of 3 with Et3SiCl to generate 1 and [Et3Si][B(C6F5)4]. The coordination of 2,2′-bipyridine (bipy) to the phosphorus of 3 induces the η5-η1-Cp* rearrangement, leading to a “slipped sandwich” compound [(η1-Cp*)P(bipy)][B(C6F5)4]2 (4). 3 also reacts with Et3SiH via η5-σ-Cp* rearrangement, affording [(σ-Cp*)PH2SiEt3][B(C6F5)4] (5) and [Et3Si][B(C6F5)4].
This paper references
10.1038/1681039B0
A New Type of Organo-Iron Compound
T. Kealy (1951)
10.1021/JA01128A527
THE STRUCTURE OF IRON BIS-CYCLOPENTADIENYL
G. Wilkinson (1952)
10.1002/ZAAC.19532740603
Zur Kristallstruktur der Di‐cyclopentadienyl‐verbindungen des zweiwertigen Eisens, Kobalts und Nickels
W. Pfab (1953)
10.1016/S0022-328X(00)80919-5
Synthese und dynamisches verhalten des 1-pentamethylcyclopentadienyl-2,3,4,5,6-pentamethyl-2,3,4,5,6-pentacarba-nido-hexaboran-kations
P. Jutzi (1978)
10.1021/ja00469a019
Transits across a cyclopentadienyl: organic and organometallic haptotropic shifts
N. T. Anh (1978)
10.1002/ANIE.197900591
Synthesis and Structure of the nido‐Cluster (CH3)5C5Sn+
P. Jutzi (1979)
10.1002/CBER.19801130233
Bis(pentamethylcyclopentadienyl)germanium und ‐zinn sowie (Pentamethylcyclopentadienyl)germanium‐ und ‐zinn‐Kationen: Synthese, Struktur und Bindungsverhältnisse
P. Jutzi (1980)
10.1021/JA00408A051
Pentamethylcyclopentadienyl-Substituted Phosphorus and Arsenic Cations: Evidence for Multihapto Bonding between Group 5A Elements and Carbocyclic Ligands
S. G. Baxter (1981)
10.1039/C39810000925
X-Ray crystal structures of bis(cyclopentadienyl)tin and bis(pentamethylcyclopentadienyl)lead
J. Atwood (1981)
10.1002/ANIE.198302501
Synthesis and Structure of Metallocene Cations of the Vb Elements Arsenic and Antimony
P. Jutzi (1983)
10.1021/JA00345A072
Ring methyl to phosphorus hydrogen shifts in pentamethylcyclopentadienyl-substituted phosphorus cations: parallel between main-group and transition-metal chemistry
A. Cowley (1983)
10.1002/CBER.19841170331
Azinkomplexe des (Pentamethylcyclopentadienyl)germanium‐ und ‐zinn‐Kations
F. Kohl (1984)
10.1021/CR00076A002
Fluxional .eta.1-cyclopentadienyl compounds of main-group elements
P. Jutzi (1986)
10.1021/JA00275A077
Synthesis and Crystal and Molecular Structure of In(C5Me5)-An Apparent Octahedral Cluster.
O. T. Beachley (1986)
10.1016/0022-328X(86)80461-2
Die kristallstruktur von TlC5Me5
H. Werner (1986)
10.1002/ANIE.198601641
Decamethylsilicocene—Synthesis and Structure
P. Jutzi (1986)
10.1002/ANIE.198817151
Arylmino(halogeno)phosphanes XPNC6H2tBu3 (X Cl, Br, I) and the Iminophosphenium Tetrachloroaluminate [PNC6H2tBu3]⊕[AlCl4]⊖: the First Stable Compound with a PN Triple Bond
E. Niecke (1988)
10.1002/CBER.19891220512
Blei(II)‐Verbindungen mit π‐gebundenen Pentamethylcyclopentadienylliganden – Synthesen, Strukturen und Bindungsverhältnisse
P. Jutzi (1989)
10.1039/DT9890000693
Synthesis, structure, and chemical reactivity of a stable C5Me5-substituted phosphanylium ion: (pentamethylcyclopentadienyl)(t-butylamino)phosphanylium tetrachloroaluminate
D. Gudat (1989)
10.1002/ANIE.199105641
The Tetrameric Aluminum(I) Compound [{Al(η5‐C5Me5)}4]
Carsten Dohmeier (1991)
10.1021/JA00049A018
Coordination isomerism in pentamethylcyclopentadienyl-substituted iminophosphanes: from classical structures to a π-complexed iminophosphenium ion
D. Gudat (1992)
10.1002/ANIE.199316551
Decamethylaluminocenium, a π-stabilized R2Al+ cation
Carsten Dohmeier (1993)
10.1021/JA00072A042
.eta.6-Arene complexation to a phosphenium cation
N. Burford (1993)
10.1021/OM00004A010
PI -COORDINATION OF ARENES TO PHOSPHORUS : MODELS OF STABLE PI -COMPLEX INTERMEDIATES IN ELECTROPHILIC AROMATIC SUBSTITUTION
N. Burford (1995)
10.1002/ANIE.199708601
Hexameric Aggregates in Crystalline (Pentamethylcyclopentadienyl)gallium(I) at 200 K
Dagmar Loos (1997)
10.1016/S0022-328X(96)06604-1
ZWEI STRUKTURELL VERSCHIEDENARTIGE STIBOCENIUM-KATIONEN
H. Sitzmann (1997)
10.1021/JA9806433
SYNTHESIS AND CHARACTERIZATION OF A TERMINAL BORYLENE (BORANEDIYL) COMPLEX
A. Cowley (1998)
10.1002/(SICI)1521-3749(199908)625:8<1354::AID-ZAAC1354>3.0.CO;2-9
Eine kettenförmige η5-Cp*Bi-Verbindung mit 11fach koordiniertem Bismut
Christoph Üffing (1999)
10.1021/CR941099T
Structurally Diverse π-Cyclopentadienyl Complexes of the Main Group Elements
P. Jutzi (1999)
10.1021/JA992573L
A Theoretical Study of Free and Fe(CO)4-Complexed Borylenes (Boranediyls) and Heavier Congeners: The Nature of the Iron-Group 13 Element Bonding
C. Macdonald (1999)
10.1021/JA002888X
Synthesis and Characterization of the First Example of a Gallocenium Cation
C. Macdonald (2000)
10.1002/1521-3765(20000915)6:18<3414::AID-CHEM3414>3.0.CO;2-P
Stability and electrophilicity of phosphorus analogues of arduengo carbenes--an experimental and computational study
Gudat (2000)
10.1039/B001271H
The structure of the decamethylborocenium cation: the most tightly-squeezed metallocene?
Andreas Voigt (2000)
10.1139/V02-075
Structural interrelationships between the bis(pentamethylcyclopentadienyl)arsenic(III) and antimony(III) cations and their precursor chlorides
Robert J. Wiacek (2002)
10.1351/pac200375040483
Strategies in the cyclopentadienyl chemistry of p-block elements
P. Jutzi (2003)
10.1021/OM020928V
Trends in Cyclopentadienyl - Main-Group-Metal Bonding
P. H. Budzelaar (2003)
10.1126/SCIENCE.1099879
The (Me5C5)Si+ Cation: A Stable Derivative of HSi+
P. Jutzi (2004)
10.1021/JA043691Y
Hypervalent, low-coordinate phosphorus(III) centers in complexes of the phosphadiazonium cation with chelate ligands.
N. Burford (2005)
10.1039/b716220k
Group 13 decamethylmetallocenium cations.
C. Macdonald (2008)
10.5860/choice.47-6875
Organotransition Metal Chemistry: From Bonding to Catalysis
J. Hartwig (2009)
10.1038/nature08634
Main-group elements as transition metals
P. Power (2010)
10.1002/CHEM.201102077
Facile access to the pnictocenium ions [Cp*ECl]+ (E = P, As) and [(Cp*)2P]+: chloride ion affinity of Al(OR(F))3.
Anne Kraft (2011)
10.1021/ic201983n
Group 15 pnictenium cations supported by a conjugated bithiophene backbone.
J. Price (2011)
10.1002/anie.201308385
A di-substituted boron dication and its hydride-induced transformation to an NHC-stabilized borabenzene.
Chao-Tang Shen (2013)
10.1126/science.1241764
Lewis Acidity of Organofluorophosphonium Salts: Hydrodefluorination by a Saturated Acceptor
Christopher B Caputo (2013)
10.1021/ic502231m
N-heterocyclic carbene-main-group chemistry: a rapidly evolving field.
Yuzhong Wang (2014)
10.1038/nchem.2063
Direct observation of a borane-silane complex involved in frustrated Lewis-pair-mediated hydrosilylations.
Adrian Y. Houghton (2014)
10.1002/anie.201501818
Bridging the Gap between Bisylides and Methandiides: Isolation, Reactivity, and Electronic Structure of an Yldiide.
Thorsten Scherpf (2015)
10.1002/anie.201502400
Elusive silane-alane complex [Si-H⋅⋅⋅Al]: isolation, characterization, and multifaceted frustrated Lewis pair type catalysis.
Jiawei Chen (2015)
10.1039/c5cs00516g
Phosphorus Lewis acids: emerging reactivity and applications in catalysis.
J. Bayne (2016)
10.1126/science.aaf7229
The broadening reach of frustrated Lewis pair chemistry
D. Stephan (2016)
10.1002/chem.201604480
A Cationic Phosphapyramidane.
V. Lee (2016)
10.1039/c6sc90005d
Correction: Bipyridine complexes of E3+ (E = P, As, Sb, Bi): strong Lewis acids, sources of E(OTf)3 and synthons for EI and EV cations
Saurabh S Chitnis (2016)
10.1021/ACS.INORGCHEM.6B02336
Cp*-Substituted Boron Cations: The Effect of NHC, NHO, and CAAC Ligands.
Jih-Sheng Huang (2016)
10.1002/cphc.201601389
Bond Strength and Reactivity Scales for Lewis Superacid Adducts: A Comparative Study with In(OTf)3 and Al(OTf)3.
Guillaume Compain (2017)
10.1002/anie.201608795
Crystal Structure Determination of the Pentagonal-Pyramidal Hexamethylbenzene Dication C6 (CH3 )62.
M. Malischewski (2017)
10.1002/anie.201702148
Cyclic (Alkyl)(amino)carbenes (CAACs): Recent Developments.
M. Melaimi (2017)
10.1002/anie.201704097
Tris(perfluorotolyl)borane-A Boron Lewis Superacid.
L. A. Körte (2017)
10.1039/c7sc03988c
The Lewis superacid Al[N(C6F5)2]3 and its higher homolog Ga[N(C6F5)2]3 – structural features, theoretical investigation and reactions of a metal amide with higher fluoride ion affinity than SbF5† †Electronic supplementary information (ESI) available. CCDC 1557072–1557076. For ESI and crystallographi
J. Kögel (2018)
10.1002/anie.201712155
Bis(perchlorocatecholato)silane-A Neutral Silicon Lewis Super Acid.
Rezisha Maskey (2018)
10.1002/chem.201801305
Catalytic Hydrodefluorination of C-F Bonds by an Air-Stable PIII Lewis Acid.
Saurabh S Chitnis (2018)
10.1002/chem.201705812
The Pentagonal‐Pyramidal Hexamethylbenzene Dication: Many Shades of Coordination Chemistry at Carbon
J. Klein (2018)



This paper is referenced by
10.1039/d0dt04412a
Pentamethyl- and 1,2,4-tri(tert-butyl)cyclopentadienyl containing p-block complexes - differences and similarities.
Yi Ding (2021)
10.1039/d1cc03038h
Reversing Lewis acidity from bismuth to antimony.
Deepti Sharma (2021)
10.1002/anie.202011571
Stabilization of Pentaphospholes as η5‐Coordinating Ligands
Christoph Riesinger (2020)
10.1002/chem.202002932
Stack by Stack: From the Free Cyclopentadienylgermanium Cation Via Heterobimetallic Main‐Group Sandwiches to Main‐Group Sandwich Coordination Polymers
Marcel Schorpp (2020)
10.1021/acs.accounts.9b00636
Trialkylsilyl-Substituted Silole and Germole Dianions as Precursors for Unusual Silicon and Germanium Compounds.
Z. Dong (2020)
10.1039/d0cc02710c
An arene-stabilized η5-pentamethylcyclopentadienyl antimony dication acts as a source of Sb+ or Sb3+ cations.
Jiliang Zhou (2020)
10.1039/d0dt00024h
Diverse structure and reactivity of pentamethylcyclopentadienyl antimony(iii) cations.
Omar Coughlin (2020)
10.1002/anie.202011372
Reversible silylium transfer between P-H and Si-H donors.
Roman G Belli (2020)
10.1002/ange.202011571
Stabilisierung von Pentaphospholen als η 5 ‐koordinierende Liganden
C. Riesinger (2020)
10.1002/anie.201902039
The Arene-Stabilized η5 -Pentamethylcyclopentadienyl Arsenic Dication [(η5 -Cp*)As(toluene)]2.
J. Zhou (2019)
10.1002/ejic.201900459
A Dicationic Bismuth(III) Lewis Acid: Catalytic Hydrosilylation of Olefins: A Dicationic Bismuth(III) Lewis Acid: Catalytic Hydrosilylation of Olefins
Selvakumar Balasubramaniam (2019)
10.1002/ANGE.201902039
The Arene‐Stabilized η 5 ‐Pentamethylcyclopentadienyl Arsenic Dication [(η 5 ‐Cp*)As(toluene)] 2+
J. Zhou (2019)
10.1002/chem.201901609
N-Heterocyclic Carbene Derived 3-Azabutadiene as a π-Base in Classic and Frustrated Lewis Pair Chemistry.
Y. Kim (2019)
10.1002/anie.201912009
Base-Stabilized [PO]+/[PO2]+ Cations.
Jiliang Zhou (2019)
Semantic Scholar Logo Some data provided by SemanticScholar