Online citations, reference lists, and bibliographies.
← Back to Search

Likelihood Approximation By Numerical Integration On Sparse Grids

Florian Heiss, Viktor Winschel
Published 2008 · Mathematics

Cite This
Download PDF
Analyze on Scholarcy
Share
The calculation of likelihood functions of many econometric models requires the evaluation of integrals without analytical solutions. Approaches for extending Gaussian quadrature to multiple dimensions discussed in the literature are either very specific or suffer from exponentially rising computational costs in the number of dimensions. We propose an extension that is very general and easily implemented, and does not suffer from the curse of dimensionality. Monte Carlo experiments for the mixed logit model indicate the superior performance of the proposed method over simulation techniques.
This paper references
10.1007/s002110200401
Smolyak cubature of given polynomial degree with few nodes for increasing dimension
K. Petras (2003)
10.1016/J.JECONOM.2006.10.012
Masking Identification of Discrete Choice Models Under Simulation Methods
L. Chiou (2007)
Numerical recipes in C
W. Press (2002)
10.2307/2288607
Methods of Numerical Integration
P. Davis (1967)
10.1016/0304-4076(88)90029-2
Econometric illustrations of novel numerical integration strategies for Bayesian inference
J. C. Naylor (1988)
10.1016/J.JECONOM.2007.02.007
Efficient high-dimensional importance sampling
J. Richard (2007)
10.1016/S0165-1889(03)00111-8
Computing equilibrium in OLG models with stochastic production
D. Krüger (2004)
10.2307/2951573
A Method for Smoothing Simulated Moments of Discrete Probabilities in Multinomial Probit Models
Steven Stern (1992)
Classical estimation methods using simulation
V. Hajivassiliou (1994)
10.1016/0885-064X(92)90001-R
Average case complexity of linear multivariate problems I. Theory
H. Wozniakowski (1992)
10.1002/JAE.719
Discrete choice methods with simulation, Kenneth E. Train, Cambridge University Press, 2003, ISBN: 0-521-81696-3, pp. 334
M. Weeks (2003)
10.1016/S0304-4076(99)00032-9
A numerically stable quadrature procedure for the one-factor random-component discrete choice model
L. Lee (2000)
10.1016/S0191-2615(00)00014-X
Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model
C. Bhat (2000)
Numerical Recipes in C, 2nd Edition
W. Press (1992)
10.1016/S0885-064X(03)00011-6
An encyclopaedia of cubature formulas
R. Cools (2003)
10.1016/S0304-4076(97)00005-5
Statistical inference in the multinomial multiperiod probit model
J. Geweke (1994)
10.1016/0377-0427(95)00232-4
Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight
A. Genz (1996)
10.1007/BF01525334
Zur mechanischen Kubatur
Johann Radon (1948)
Quadrature and interpolation formulas for tensor products of certain classes of functions
S. A. Smolyak (1963)
10.1016/s0898-1221(03)90177-5
Applied Computational Economics and Finance
M. Miranda (2002)
10.1016/S0304-4076(98)00057-8
Forecasting new product penetration with flexible substitution patterns
D. Brownstone (1998)
10.1016/S0304-4076(03)00212-4
Alternative sampling methods for estimating multivariate normal probabilities
Z. Sándor (2003)
10.1016/J.JECONOM.2004.08.017
Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects
S. Rabe-Hesketh (2005)
10.1016/S1574-0021(96)01017-9
Monte carlo simulation and numerical integration
J. Geweke (1995)
10.1162/003465398557735
Mixed Logit with Repeated Choices: Households' Choices of Appliance Efficiency Level
David Revelt (1998)
10.1016/J.TRB.2004.10.005
On the use of a Modified Latin Hypercube Sampling (MLHS) method in the estimation of a Mixed Logit Model for vehicle choice
S. Hess (2006)
10.1006/jcom.1995.1001
Explicit Cost Bounds of Algorithms for Multivariate Tensor Product Problems
G. Wasilkowski (1995)
10.1016/0304-4076(93)90049-B
Smooth unbiased multivariate probability simulators for maximum likelihood estimation of limited dependent variable models
A. Boersch-Supan (1993)
10.1016/S0304-4076(97)00014-6
Simulated Maximum Likelihood Estimation of Dynamic Discrete Choice Statistical Models Some Monte Carlo Results
Lung-fei Lee (1997)
10.2307/1912613
A COMPUTATIONALLY EFFICIENT QUADRATURE PROCEDURE FOR THE ONE-FACTOR MULTINOMIAL PROBIT MODEL
J. S. Butler (1982)
10.1090/S0025-5718-68-99866-9
The optimum addition of points to quadrature formulae.
T. Patterson (1968)
10.2307/1913621
A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration
D. Mcfadden (1989)
Sparse grids.
Bungartz (2004)
10.1002/1099-1255(200009/10)15:5<447::AID-JAE570>3.0.CO;2-1
MIXED MNL MODELS FOR DISCRETE RESPONSE
D. Mcfadden (2000)
10.1093/BIOMET/81.3.624
A note on Gauss—Hermite quadrature
Q. Liu (1994)
Numerical methods in economics
K. Judd (1998)
10.1017/CBO9780511753930
Discrete Choice Methods with Simulation by Kenneth E. Train
K. Train (2003)
10.2307/2005635
Approximate calculation of multiple integrals
A. Stroud (1973)
10.1007/s00607-003-0015-5
Dimension–Adaptive Tensor–Product Quadrature
T. Gerstner (2003)
10.2139/SSRN.758364
Solving, Estimating and Selecting Nonlinear Dynamic Economic Models Without the Curse of Dimensionality
Viktor Winschel (2005)



This paper is referenced by
10.1109/TAES.2013.6558008
Sparse-Grid Quadrature $H_\infty $ Filter for Discrete-Time Systems with Uncertain Noise Statistics
B. Jia (2013)
ONLINE APPENDIX: Vertical Integration and Exclusivity in Platform and Two-Sided Markets
R. Lee (2013)
10.1016/J.PHOTONICS.2011.10.003
Design of robust and efficient photonic switches using topology optimization
Y. Elesin (2012)
10.1561/0800000022
The Composite Marginal Likelihood (CML) Inference Approach with Applications to Discrete and Mixed Dependent Variable Models
C. Bhat (2014)
A Constrained Conditional Likelihood Approach for Estimating the Means of Selected Populations
C. Fuentes (2017)
10.1890/09-1903.1
Individual heterogeneity in studies on marked animals using numerical integration: capture-recapture mixed models.
O. Gimenez (2010)
10.1016/j.jbiomech.2015.11.013
Uncertainty quantification for personalized analyses of human proximal femurs.
H. Wille (2016)
10.2514/6.2013-4947
Sparse-Grid Quadrature H-infinity Filter for Discrete-time Systems with Uncertain Noise Statistics
Bin Jia (2013)
10.1109/I2MTC.2013.6555643
Sparse-grid Quadrature Kalman Filter based on the Kronrod-Patterson rule
Cheng Xiang-hong (2013)
Sparse Grids One-dimensional Multilevel Basis
(2008)
Stability of Controllers for Gaussian Process Forward Models
Julia Vinogradska (2016)
10.2514/6.2010-7588
Sparse Gauss-Hermite Quadrature Filter for Orbit Estimation
B. Jia (2010)
10.1016/J.STRUSAFE.2018.06.007
Reliability-based lifecycle management for corroding pipelines
Mihir A. Mishra (2019)
10.1002/sta4.156
Frequentist and Bayesian inference for Gaussian-log-Gaussian wavelet trees, and statistical signal processing applications
R. Jacobsen (2014)
10.1109/ACC.2010.5531487
Sparse Gauss-Hermite Quadrature filter for spacecraft attitude estimation
Bin Jia (2010)
10.1002/9781118287798.CH11
The Sigma Point Class: The Gauss–Hermite Kalman Filter
Anton J. Haug (2012)
10.1109/ACC.2014.6859199
Gaussian mixture model based high dimensional SLAM utilizing sparse grid quadrature
Matthew R. Turnowicz (2014)
10.3850/978-981-11-2724-3_0827-cd
Probabilistic Modelling for Frequency Response Functions and Transmissibility Functions with Complex Ratio Statistics
Meng-Yun Zhao (2019)
10.1016/J.CMA.2018.03.027
Uncertainty quantification guided robust design for nanoparticles’ morphology
Y. He (2018)
10.1007/978-3-642-16004-2_4
Sparse Grid Quadrature
M. Holtz (2011)
10.1109/ACC.2011.5990851
Salient point quadrature nonlinear filtering
B. Jia (2011)
10.1016/J.JOCM.2013.04.006
The composite marginal likelihood (CML) estimation of panel ordered-response models
Rajesh Paleti (2013)
10.4208/CICP.260111.230911A
A Numerical Comparison Between Quasi-Monte Carlo and Sparse Grid Stochastic Collocation Methods
Juarez S. Azevedo (2012)
10.1063/1.4903729
Maximum entropy analysis of hydraulic pipe networks
Steven H. Waldrip (2014)
10.1063/1.4999153
Computing vibrational energy levels of CH4 with a Smolyak collocation method.
Gustavo Avila (2017)
10.1049/IET-SMT.2019.0317
MASGQF with application to SINS alignment
Chen Qian (2020)
10.1111/biom.12124
Estimating marginal properties of quantitative real-time PCR data using nonlinear mixed models.
D. Gerhard (2014)
Slow Exponential Growth for Clenshaw Curtis Sparse Grids
J. Burkardt (2014)
10.1109/TMTT.2020.2988458
Uncertainty Quantification of Waveguide Dispersion Using Sparse Grid Stochastic Testing
M. Gossye (2020)
Macro-modeling of electromagnetic domains exhibiting geometric and material uncertainty
J. Ochoa (2012)
10.2514/6.2016-0433
Sparse polynomial surrogates for aerodynamic computations with random inputs
E. Savin (2016)
State Space Modelling of Dynamic Choice Behavior with Habit Persistence
Kang Bok Lee (2014)
See more
Semantic Scholar Logo Some data provided by SemanticScholar