Online citations, reference lists, and bibliographies.
← Back to Search

Static And Dynamic Mechanical Properties Of Boron Carbide Processed By Spark Plasma Sintering

S. Hayun, V. Paris, M. Dariel, N. Frage, E. Zaretzky
Published 2009 · Materials Science

Cite This
Download PDF
Analyze on Scholarcy
Share
Abstract Spark plasma sintering (SPS) has become a popular technique for the densification of covalent ceramics. The present investigation is focused on the static mechanical properties and dynamic compressive behavior of SPS consolidated boron carbide powder without any sintering additives. Fully dense boron carbide bodies were obtained by a short high temperature SPS treatment. The mechanical properties of the SPS-processed material, namely hardness (32 GPa), Young modulus (470 GPa), fracture toughness KC (3.9–4.9 MPa m0.5), flexural strength (430 MPa) and Hugoniot elastic limit (17–19 GPa) are close or even better than those of hot-pressed boron carbide.
This paper references
10.1063/1.321790
Relationship between impact yield stress and indentation hardness
J. Gilman (1975)
Lasl Shock Hugoniot Data
S. P. Marsh (1980)
10.1081/AMP-200028083
Sintering Aids in the Consolidation of Boron Carbide (B4C) by the Plasma Pressure Compaction (P2C) Method
B. Klotz (2004)
10.1007/3-540-45613-9_1
Phase Equilibria in the Si-B-C-N System
H. J. Seifert (2002)
10.1007/BF00725625
A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics
K. Niihara (1983)
10.1016/0955-2219(90)90048-K
Boron carbide ― a comprehensive review
F. Thévenot (1990)
10.1179/MST.1989.5.9.865
Vickers indentation fracture toughness test Part 1 Review of literature and formulation of standardised indentation toughness equations
C. B. Ponton (1989)
10.1111/J.1151-2916.2000.TB01647.X
Densification and Mechanical Properties of B4C with Al2O3 as a Sintering Aid
H. Kim (2004)
10.1007/S11661-999-0230-6
The effect of Ti and TiO2 additions on the pressureless sintering of B4C
L. Levin (1999)
10.1007/BF00555296
Indentation fracture of WC-Co cermets
D. K. Shetty (1985)
10.21236/ada393374
Shock Response of Boron Carbide
D. P. Dandekar (2001)
10.1111/J.1151-2916.2003.TB03498.X
Pressureless Sintering of Boron Carbide
H. Lee (2003)
A Proposed Uniaxial Compression Test for High Strength Ceramics
William A. Dunlay (1989)
10.1063/1.1686902
Dynamic behavior of boron carbide
T. Vogler (2004)
10.1063/1.1660986
Laser interferometer for measuring high velocities of any reflecting surface
L. Barker (1972)
10.1016/B978-0-444-89732-9.50103-5
SHOCK-WAVE PROPERTIES OF HIGH-STRENGTH CERAMICS
D. Grady (1992)
10.1007/S11106-007-0082-9
The effect of Fe addition on the densification of B4C powder by spark plasma sintering
N. Frage (2007)
10.1051/JP4:1994859
Shock-wave strength properties of boron carbide and silicon carbide.
D. Grady (1994)
10.1111/J.1151-2916.2002.TB00260.X
Hardness and Fracture Toughness of Pressureless‐Sintered Boron Carbide (B4C)
H. Lee (2004)
10.1111/J.1551-2916.2007.01652.X
Dynamic Indentation Response of Fine‐Grained Boron Carbide
D. Ghosh (2007)
10.1016/0022-5088(81)90195-8
The influence of carbon on the microstructure and mechanical properties of sintered boron carbide
K. Schwetz (1981)
10.1016/S0955-2219(98)00071-5
Processing and mechanical properties of boron carbide sintered with TiC
L. Sigl (1998)
10.1111/J.1551-2916.2005.00245.X
Influence of synthesis temperature on the defect structure of boron carbide: Experimental and modeling studies
U. Anselmi-Tamburini (2005)
10.1016/J.CERAMINT.2009.09.004
Microstructural characterization of spark plasma sintered boron carbide ceramics
S. Hayun (2010)
10.1063/1.355247
On the relation between the Hugoniot elastic limit and the yield strength of brittle materials
Z. Rosenberg (1993)
10.2172/5777672
Shock compression and release in high-strength ceramics
M. E. Kipp (1989)
10.1016/B978-0-444-89732-9.50108-4
SPALLATION BEHAVIOR OF TiB2, SiC, AND B4C UNDER PLANAR IMPACT TENSILE STRESSES
W. Winkler (1992)
10.1007/BF00240800
Mechanical properties of pressureless sintered boron carbide containing TiB2 phase
V. Skorokhod (1996)
10.1063/1.347524
APPLYING STEINBERG'S MODEL TO THE HUGONIOT ELASTIC LIMIT OF POROUS BORON CARBIDE SPECIMENS
N. Brar (1991)
10.1063/1.50656
On the correlation between dynamic compressive strengths of strong ceramics and their indentation hardness
Z. Rosenberg (2008)
10.1111/J.1151-2916.1976.TB10991.X
Fracture Toughness Determinations by Indentation
A. Evans (1976)



This paper is referenced by
10.1016/J.CERAMINT.2018.09.148
Addition of carbon fibers into B4C infiltrated with molten silicon
Ievgen Solodkyi (2019)
10.1016/J.CERAMINT.2018.10.202
A low cost, low energy, environmentally friendly process for producing high-purity boron carbide
Shuaibo Gao (2019)
10.1016/J.CERAMINT.2013.08.106
Densification behavior and related phenomena of spark plasma sintered boron carbide
Xiaoguang Li (2014)
10.1016/J.IJIMPENG.2010.10.027
Divergent impact study of the compressive failure threshold in SiC and B4C
V. Paris (2011)
10.3103/S1063457618040020
Low-Temperature Synthesis of Boron Carbide Ceramics
I. V. Solodkyi (2018)
10.1080/17452759.2013.862959
Bio-inspired structured boron carbide-boron nitride composite by reactive spark plasma sintering
Sky Shumao Xie (2013)
10.1134/S1995078015050195
Dependence of physical, mechanical, and structural properties of TiN ceramics on temperature of spark plasma sintering
A. Sivkov (2015)
10.1016/J.JEURCERAMSOC.2013.10.006
Additive-free superhard B4C with ultrafine-grained dense microstructures
B. M. Moshtaghioun (2014)
10.1002/9781118807576.CH10
Pressureless Sintering of SiC-B4C Composites
Luc J. Vandeperre (2013)
10.1111/JACE.13178
Effect of Alumina on the Structure and Mechanical Properties of Spark Plasma Sintered Boron Carbide
Kelvin Y Xie (2014)
10.1016/J.JEURCERAMSOC.2017.02.023
Fabrication and characterization of a new-style structure capillary channel in reaction bonded silicon carbide composites
Suocheng Song (2017)
10.1016/J.CERAMINT.2014.08.081
A fractographical approach to the sintering process in porous ZrB2–B4C binary composites
M. S. Asl (2015)
10.1016/J.CERAMINT.2017.07.203
Floating zone partial re-melting of B4C infiltrated with molten Si
Ievgen Solodkyi (2017)
10.1016/J.CERAMINT.2018.05.163
The role of TiO2 incorporation in the preparation of B4C/Al laminated composites with high strength and toughness
Li-Kai Yang (2018)
10.1016/J.CERAMINT.2015.03.167
Effect of particle size, heating rate and CNT addition on densification, microstructure and mechanical properties of B4C ceramics
Barış Yavaş (2015)
10.1002/ADEM.201800376
Reactive Forging − Pressure Assisted Thermal Explosion Mode of SHS for Processing Dense In Situ Composites and Structural Parts: A Review
Irena Gotman (2018)
PROCESSING AND CHARACTERIZATION OF B 4 CSiC / ( Al , Si ) MULTI-CARBIDES COMPOSITES .
B. A. Almeida (2014)
10.1016/J.ACTAMAT.2015.09.028
The effects of defects on the uniaxial compressive strength and failure of an advanced ceramic
J. D. Hogan (2016)
10.1016/J.JMST.2017.05.012
Fabrication of laminated TiB2-B4C/Cu-Ni composites by electroplating and spark plasma sintering
Ziyi Wu (2017)
10.7282/T30G3J88
The evolution and implication of boron carbide microstructural variations and transformations during powder processing
D. Maiorano (2011)
10.1063/1.4918604
Hugoniot equation of state and dynamic strength of boron carbide
D. Grady (2015)
10.1016/J.JALLCOM.2019.05.037
Does grain size have an influence on intrinsic mechanical properties and conduction mechanism of near fully-dense boron carbide ceramics?
B. M. Moshtaghioun (2019)
Frittage par Spark Plasma Sintering de céramiques de carbure de bore : modélisation numérique du procédé et optimisation des nano-,microstructures pour l’amélioration des performances des absorbants en réacteurs à neutrons rapides
L. Roumiguier (2019)
10.1016/J.MATDES.2011.12.013
Characteristic and mechanical properties of magnesium matrix composites reinforced with Mg2B2O5w and B4Cp
Jianguo Li (2012)
10.1016/J.CERAMINT.2013.07.120
Wettability of 2519Al on B4C at 1000–1250 °C and mechanical properties of infiltrated B4C–2519Al composites
Haobo Wu (2014)
10.1016/J.JEURCERAMSOC.2016.03.028
Transient liquid phase spark plasma sintering of B4C-based ceramics using Ti-Al intermetallics as sintering aid
W. Ji (2016)
10.1016/J.CERAMINT.2017.10.230
Comparisons of the densification, microstructure and mechanical properties of boron carbide sintered by hot pressing and spark plasma sintering
X. Zhang (2018)
10.1016/j.ijrmhm.2019.105124
Sintering and sliding wear studies of B4C-SiC composites
Sonali Jamale (2020)
10.36410/jcpr.2019.20.1.113
Microstructure and mechanical properties of B4C-TiB2 ceramic composites hot pressed with in-situ reaction
P. Švec (2019)
10.1016/J.IJIMPENG.2010.06.008
The spall strength of silicon carbide and boron carbide ceramics processed by spark plasma sintering
V. Paris (2010)
10.1016/J.MSEA.2015.01.020
Fabrication of dense B4C/CNF composites having extraordinary high strength and toughness at elevated temperatures
K. Hirota (2015)
10.1002/9781119321736.CH4
Low Temperature Fabrication of Transparent Magnesium Aluiminate Spinel by High Pressure Spark Plasma Sintering
Maxim Sokol (2017)
See more
Semantic Scholar Logo Some data provided by SemanticScholar