Online citations, reference lists, and bibliographies.
← Back to Search

Optimising Dopants And Properties In BiMeO3 (Me = Al, Ga, Sc, Y, Mg2/3Nb1/3, Zn2/3Nb1/3, Zn1/2Ti1/2) Lead-free BaTiO3-BiFeO3 Based Ceramics For Actuator Applications

Shunsuke Murakami, N. Ahmed, D. Wang, A. Feteira, D. Sinclair, I. Reaney
Published 2018 · Materials Science

Cite This
Download PDF
Analyze on Scholarcy
Share
Abstract A crystallochemical framework is proposed based on electronegativity difference (en) and tolerance factor (t) to optimise the BiMeO3 dopants and therefore the piezoelectric and high-field strain response in BaTiO3-BiFeO3 based ceramics. Compositions in the series 0.05Bi(Me)O3-0.25BaTiO3-0.7BiFeO3 (BMe-BT-BF, Me: Y, Sc1/2Y1/2, Mg2/3Nb1/3, Sc, Zn2/3Nb1/3, Zn1/2Ti1/2, Ga, and Al) were fabricated using solid state synthesis and furnace cooled. Scanning electron microscopy and X-ray diffraction revealed that only Bi(Mg2/3Nb1/3)O3 and BiScO3 dopants, which lie in a narrow range of en vs. t, form homogeneous ceramics, free from secondary phases reflected in their superior piezoelectric coefficients (d33 ∼145 pC/N). All other BiMeO3 additions exhibited either secondary phases (Y) and/or promoted a two-phase perovskite matrix (Zn, Ga and Al). The promising initial properties of BiScO3 doped compositions prompted further studies on 0.05BiScO3-(0.95-x)BaTiO3-(x)BiFeO3 (BS-BT-BF, x = 0.55, 0.60, 0.625, 0.65, and 0.70) ceramics. As x increased the structure changed from predominantly pseudocubic to rhombohedral, resulting in a transition from a relaxor-like to ferroelectric response. The largest d33* (465 pm/V) was achieved for x = 0.625 under 5 kV/mm at the crossover from relaxor to ferroelectric behaviour. BS-BT-BF with x = 0.625 showed >0.3% strain under 6 kV/mm up to 175 °C, demonstrating its potential for actuator applications.
This paper references
10.1016/J.CERAMINT.2016.02.168
Dielectric, ferroelectric and field-induced strain response of lead-free (Fe, Sb)-modified (Bi0.5Na0.5)0.935Ba0.065TiO3 ceramics
Liangliang Li (2016)
10.1063/1.2897033
Origin of high piezoelectric activity in ferroelectric (K0.44Na0.52Li0.04)−(Nb0.84Ta0.1Sb0.06)O3 ceramics
E. K. Akdogan (2008)
10.1111/JACE.12326
Remarkably High‐Temperature Stability of Bi(Fe1−xAlx)O3–BaTiO3 Solid Solution with Near‐Zero Temperature Coefficient of Piezoelectric Properties
Zhenyong Cen (2013)
Preparation of lead-based ferroelectric relaxors for capacitors
T. Shrout (1987)
10.1016/J.SCRIPTAMAT.2009.03.016
Influence of Zr dopant on the dielectric properties and Curie temperatures of Ba(ZrxTi1−x)O3 (0 ≤ x ≤ 0.12) ceramics
S. Kuang (2009)
10.1063/1.4966614
Phase transformation induced by electric field and mechanical stress in Mn-doped (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3 ceramics
Y. Ehara (2016)
10.1111/J.1551-2916.2008.02676.X
Ferroelectric and Ferromagnetic Properties of 0.7BiFe1−xCrxO3–0.3BaTiO3 Solid Solutions
X. Liu (2008)
10.1038/nature03028
Lead-free piezoceramics
Y. Saito (2004)
10.1039/C7TA09857J
Bismuth ferrite-based lead-free ceramics and multilayers with high recoverable energy density
D. Wang (2018)
10.1111/JACE.14589
Composition and temperature dependence of structure and piezoelectricity in (1−x)(K1−yNay)NbO3-x(Bi1/2Na1/2)ZrO3 lead-free ceramics
D. Wang (2017)
10.1016/J.JEURCERAMSOC.2007.02.100
Temperature stability of the piezoelectric properties of Li-modified KNN ceramics
Evelyn Hollenstein (2007)
10.1111/JACE.14472
Current Understanding of Structure–Processing–Property Relationships in BaTiO3–Bi(M)O3 Dielectrics
Michaela A. Beuerlein (2016)
10.1111/J.1551-2916.2012.05387.X
Dielectric, Ferroelectric, and Piezoelectric Properties of Bi(Ni1/2Ti1/2)O3‐Modified BiFeO3–BaTiO3 Ceramics with High Curie Temperature
Qin Zhou (2012)
10.1002/PSSA.201431485
Structure, ferroelectric, ferromagnetic, and piezoelectric properties of Al‐modified BiFeO3–BaTiO3 multiferroic ceramics
W. Zhou (2015)
10.1111/J.1551-2916.2009.03313.X
Dielectric and Piezoelectric Properties in Mn‐Modified (1−x)BiFeO3–xBaTiO3 Ceramics
S. Leontsev (2009)
10.1016/J.CERAMINT.2015.03.100
Sol–gel synthesis of Nd-doped BiFeO3 multiferroic and its characterization
D. Wang (2015)
10.1111/JACE.13169
Structure, Ferroelectric, Piezoelectric, and Ferromagnetic Properties of BiFeO3‐BaTiO3‐Bi0.5Na0.5TiO3 Lead‐Free Multiferroic Ceramics
Y. Li (2014)
10.1063/1.2783200
Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system
S. Zhang (2007)
10.1063/1.4901198
Enhanced ferroelectricity, piezoelectricity, and ferromagnetism in Nd-modified BiFeO3-BaTiO3 lead-free ceramics
Q. Zheng (2014)
10.1063/1.4714346
Electromechanical strain in Bi(Zn1/2Ti1/2)O3–(Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 solid solutions
E. A. Patterson (2012)
10.1103/PHYSREVLETT.103.257602
Large piezoelectric effect in Pb-free ceramics.
W. Liu (2009)
10.1016/J.JALLCOM.2015.09.161
Full set of material constants of (Na0.5K0.5)NbO3–BaZrO3–(Bi0.5Li0.5)TiO3 lead-free piezoelectric ceramics at the morphotropic phase boundary
H. Shi (2016)
10.1002/adma.201502424
High-Performance Lead-Free Piezoceramics with High Curie Temperatures.
M. Lee (2015)
10.1016/J.JEURCERAMSOC.2016.10.027
Temperature dependent, large electromechanical strain in Nd-doped BiFeO3-BaTiO3 lead-free ceramics
D. Wang (2017)
10.1016/J.JEURCERAMSOC.2016.12.020
Electric-field-temperature phase diagram and electromechanical properties in lead-free (Na0.5Bi0.5)TiO3-based incipient piezoelectric ceramics
X. Liu (2017)
10.1016/J.CERAMINT.2007.09.029
Ferroelectric and ferromagnetic properties of Mn-doped 0.7BiFeO3–0.3BaTiO3 solid solution
X. Liu (2008)
10.1016/J.MATCHEMPHYS.2009.10.011
Ferroelectric and ferromagnetic properties of Gd-doped BiFeO3-BaTiO3 solid solution
Radheshyam Rai (2010)
10.1016/J.CERAMINT.2013.09.020
Compositional dependence of dielectric and ferroelectric properties in BiFeO3–BaTiO3 solid solutions
H. Zhang (2014)
10.1063/1.4964411
Temperature stable and fatigue resistant lead-free ceramics for actuators
Amir Khesro (2016)
10.1016/0009-9120(93)90113-K
Perspectives on lead toxicity.
G. Lockitch (1993)
10.1039/C5TC02203G
Effects of site engineering and doped element types on piezoelectric and dielectric properties of bismuth ferrite lead-free ceramics
T. Zheng (2015)
10.1063/1.4766450
Ferroic states and phase coexistence in BiFeO3-BaTiO3 solid solutions
R. Gotardo (2012)
10.1039/c6dt01805j
Enhanced piezoelectricity in (1 -x)Bi1.05Fe1-yAyO3-xBaTiO3 lead-free ceramics: site engineering and wide phase boundary region.
T. Zheng (2016)
10.1111/JACE.15749
High strain (0.4%) Bi(Mg2/3Nb1/3)O3‐BaTiO3‐BiFeO3 lead‐free piezoelectric ceramics and multilayers
Shunsuke Murakami (2018)
10.1016/J.PHYSB.2012.11.003
Structure, electrical properties of Bi(Fe, Co)O3–BaTiO3 piezoelectric ceramics with improved Curie temperature
C. Zhou (2013)
10.1007/s10854-014-2492-z
Phase transition, dielectric, ferroelectric and ferromagnetic properties of La-doped BiFeO3–BaTiO3 multiferroic ceramics
Xiaocong Wu (2014)
10.1016/J.JEURCERAMSOC.2004.03.012
Electrical properties and ageing characteristics of BaTiO3 ceramics doped by single dopants
Z. Li (2005)
10.1111/JACE.13604
Temperature Stability of Lead‐Free Niobate Piezoceramics with Engineered Morphotropic Phase Boundary
R. Wang (2015)
10.1063/1.2838472
Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3. I. Structure and room temperature properties
S. Zhang (2008)
10.1063/1.371953
Structure property relations in BiFeO3/BaTiO3 solid solutions
M. Kumar (2000)
10.1289/EHP.93100177
Lead toxicity: current concerns.
R. Goyer (1993)
10.1111/JACE.12827
Microstructure, Ferroelectric, Piezoelectric, and Ferromagnetic Properties of Sc‐Modified BiFeO3–BaTiO3 Multiferroic Ceramics with MnO2 Addition
Y. Wan (2014)
10.1002/PSSA.201532127
Phase transition, piezoelectric, and multiferroic properties of La(Co0.5Mn0.5)O3‐modified BiFeO3–BaTiO3 lead‐free ceramics
Lingling Luo (2015)
10.7567/JJAP.54.10ND05
Effects of poling termination and aging process on piezoelectric properties of Mn-doped BaTi
Shunsuke Murakami (2015)



This paper is referenced by
10.1007/s10832-019-00181-8
Effect of BiScO3 doping on the structure and properties of BiFeO3-BaTiO3 piezoelectric ceramics
Shibo Guan (2019)
10.1038/s43246-020-00072-4
Piezoelectricity in perovskite-type pseudo-cubic ferroelectrics by partial ordering of off-centered cations
Y. Kuroiwa (2020)
10.1016/J.JEURCERAMSOC.2019.02.038
Thermally-stable high dielectric properties of (1–x)(0.65Bi1.05FeO3–0.35BaTiO3)–xBiGaO3 piezoceramics
Fazli Akram (2019)
10.1111/JACE.16676
Electric field‐induced irreversible relaxor to ferroelectric phase transformations in Na0.5Bi0.5TiO3‐NaNbO3 ceramics
Ge Wang (2019)
10.3389/fmats.2020.00087
Lead Free Multilayer Piezoelectric Actuators by Economically New Approach
Fayaz Hussain (2020)
10.1039/C8EE03287D
Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity
G. Wang (2019)
10.1016/J.CERAMINT.2019.08.111
Study of the structure, electrical properties, and energy storage performance of ZnO-modified Ba0.65Sr0.245Bi0.07TiO3 Pb-free ceramics
Y. Li (2020)
10.1016/j.jeurceramsoc.2019.12.009
Lead-free (Ba,Sr)TiO3 – BiFeO3 based multilayer ceramic capacitors with high energy density
G. Wang (2020)
10.1016/J.CERAMINT.2018.10.045
Large strain response in (1-x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xSr0.8Bi0.1▫0.1Ti0.8Zr0.2O2.95 lead-free piezoelectric ceramics
Q. Li (2019)
10.1007/s10854-019-01993-8
Study on piezoelectric, dielectric and dispersive phase transition of BaTiO3–BaZrO3–CaTiO3 ceramics
Wenshuo Kang (2019)
Correlative chemical and structural nanocharacterization of a pseudo-binary 0.75Bi(Fe(1-x)Tix)O3–0.25BaTiO3 ceramic
Shane J. McCartan (2020)
10.1016/J.IJSOLSTR.2019.06.019
Phase field simulations on domain switching-induced toughening or weakening in multiferroic composites
Yan Alexander Wang (2019)
10.7567/1347-4065/AB37B5
Thermal annealing induced recovery of damaged surface layer for enhanced ferroelectricity in Bi-based ceramics
Hyunwook Nam (2019)
10.1016/j.jeurceramsoc.2019.12.026
Enhanced electromechanical properties of SrTiO3-BiFeO3-BaTiO3 ceramics via relaxor behavior and phase boundary design
F. Kang (2020)
10.1039/c9ta07904a
Origin of the large electrostrain in BiFeO3-BaTiO3 based lead-free ceramics
G. Wang (2019)
10.1016/j.jallcom.2020.154160
Structure evolution, ferroelectric properties, and energy storage performance of CaSnO3 modified BaTiO3-based Pb-free ceramics
G. Liu (2020)
Correlative chemical and structural nanocharacterization of a pseudo-binary 0.75Bi(Fe0.97Ti0.03)O3-0.25BaTiO3 ceramic
Shane J. McCartan (2020)
10.1007/s10854-018-0550-7
Effect of doping Gd2O3 on dielectric and piezoelectric properties of BaZr0.1Ti0.9O3 ceramics by sol–gel method
Wenshuo Kang (2018)
10.1007/s10854-018-0437-7
Structure and property of lead-free (K,Na)NbO3–(Bi1/2Na1/2)ZrO3–CaTiO3 piezoelectric ceramics
Nan Zhang (2018)
10.1016/j.nanoen.2020.104944
Ultrahigh piezoelectricity in lead-free piezoceramics by synergistic design
D. Wang (2020)
10.1039/d0ee02104k
Superior energy density through tailored dopant strategies in multilayer ceramic capacitors
Z. Lu (2020)
10.1016/J.JEURCERAMSOC.2019.06.015
Enhanced resistance in Bi(Fe1-xScx)O3-0.3BaTiO3 lead-free piezoelectric ceramics: Facile analysis and reduction of oxygen vacancy
Bo-Wei Xun (2019)
10.1016/J.JEURCERAMSOC.2019.04.044
Processing, piezoelectric and ferroelectric properties of (x)BiFeO3-(1-x)SrTiO3 ceramics
M. Makarovic (2019)
10.1016/j.jallcom.2020.156788
Temperature-insensitive piezoelectric properties of lead-free BiFeO3–BaTiO3 ceramics with high Curie temperature
M. Habib (2021)
10.1016/J.SCRIPTAMAT.2019.01.028
High electrostrain with high Curie temperature in BiFeO3-BaTiO3-based ceramics
L. Wang (2019)
10.1142/S2010135X18300049
BiFeO3-BaTiO3: A new generation of lead-free electroceramics
D. Wang (2018)
10.1007/s10853-020-04613-7
Enhanced electric-field-induced strain in 0.7Bi(1−x)SmxFeO3–0.3BaTiO3 lead-free ceramics
Zhuang Ma (2020)
10.1007/s10854-019-00694-6
Lanthanum modified BFO–BT solid solutions: a structural, electrical and magnetic study
C. Behera (2019)
Semantic Scholar Logo Some data provided by SemanticScholar