Online citations, reference lists, and bibliographies.
← Back to Search

Enhanced Lithiation And Fracture Behavior Of Silicon Mesoscale Pillars Via Atomic Layer Coatings And Geometry Design

Jianchao Ye, Yonghao An, Yonghao An, T. Heo, M. Biener, R. Nikolić, M. Tang, H. Jiang, Yinmin Wang
Published 2014 · Materials Science

Save to my Library
Download PDF
Analyze on Scholarcy
Share
Abstract Crystalline silicon nanostructures are commonly known to exhibit anisotropic expansion behavior during the lithiation that leads to grooving and fracture. Here we report surprisingly relatively uniform volume expansion behavior of large aspect-ratio (∼25), well-patterned, n-type (100) silicon micropillars (∼2 μm diameter) during the initial lithiation. The comparison results with and without atomic layer metal oxides (Al 2 O 3 and TiO 2 ) coatings reveal drastically enhanced solid electrolyte interphase (SEI) formation, higher volume expansion, and increased anisotropy. Square-pillars are found to exhibit nearly twice volume expansion without fracture compared to circular-pillars. Models are invoked to qualitatively address these beneficial or detrimental properties of silicon for lithium ion battery. Our experiments and computer simulations point at the critical relevance of SEI and pristine geometry in regulating volume expansion and failure. ALD-coated ultrathin metal oxides can act as an ion channel gate that helps promote fast Li + transport into the bulk by changing the surface kinetics, suggesting new ways of designing electrodes for high-performance lithium ion battery applications.
This paper references
10.1016/J.JPOWSOUR.2009.01.007
Surface Chemistry and Morphology of the Solid Electrolyte Interphase on Silicon Nanowire Lithium-ion Battery Anodes
C. Chan (2009)
10.1021/nl204437t
Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires.
H. Yang (2012)
10.1177/001452469000101110
"J."
G.G. Stokes (1890)
10.1021/nn305282d
Self-limiting lithiation in silicon nanowires.
X. Liu (2013)
Phys
M. J. Chon (2011)
10.1021/CM900636S
Controlling Atomic Layer Deposition of TiO2 in Aerogels through Surface Functionalization
Sutapa Ghosal (2009)
Chem
S. Ghosal (2009)
10.1016/J.JMPS.2012.11.001
Interface-reaction controlled diffusion in binary solids with applications to lithiation of silicon in lithium-ion batteries
Zhiwei Cui (2013)
Nano Lett
X. H. Liu (2011)
10.1063/1.1713863
Young's Modulus, Shear Modulus, and Poisson's Ratio in Silicon and Germanium
J. Wortman (1965)
10.1021/nl200412p
Ultrafast electrochemical lithiation of individual Si nanowire anodes.
X. Liu (2011)
Chem
L. F. Shen (2011)
10.1002/ADFM.201002487
Strain Anisotropies and Self-Limiting Capacities in Single-Crystalline 3D Silicon Microstructures: Models for High Energy Density Lithium-Ion Battery Anodes
Jason L. Goldman (2011)
10.1073/pnas.1201088109
Fracture of crystalline silicon nanopillars during electrochemical lithium insertion
S. Lee (2012)
10.1515/9783486731620-002
I
John B. Shoven (1824)
Phys
J. J. Wortman (1965)
Nano Lett
J. W. Wang (2013)
10.1117/12.589322
Properties of atomic-layer-deposited Al2O3/ZnO dielectric films grown at low temperature for RF MEMS
C. Herrmann (2005)
10.1063/1.331028
Growth kinetics of planar binary diffusion couples: ’’Thin‐film case’’ versus ’’bulk cases’’
U. Gösele (1982)
10.1016/0025-5408(83)90106-X
The oxide handbook
W. White (1983)
10.1103/physrevlett.107.045503
Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon.
M. Chon (2011)
Adv
M. T. McDowell (2012)
10.1021/nl201684d
Anisotropic swelling and fracture of silicon nanowires during lithiation.
X. Liu (2011)
10.1002/BBPC.19820860820
G. V. Samsonov (Ed.): The Oxide Handbook, 2nd Edition. IFI/Plenum, New York and London 1982. 463 Seiten, Preis: $75,‐
O. Kubaschewski (1982)
Acta Mater
P. Limthongkul (2003)
10.1016/J.JPOWSOUR.2012.04.105
Shape evolution of patterned amorphous and polycrystalline silicon microarray thin film electrodes caused by lithium insertion and extraction
Y. He (2012)
10.1007/S002160050409
Density and Young’s modulus of thin TiO2 films
O. Anderson (1997)
10.1002/AENM.201200857
Micro-sized Si-C Composite with Interconnected Nanoscale Building Blocks as High-Performance Anodes for Practical Application in Lithium-Ion Batteries
R. Yi (2013)
Nano Lett
M. Pharr (2012)
10.1021/CM0304546
Low-Temperature Al2O3 Atomic Layer Deposition
M. Groner (2004)
10.1016/J.JPOWSOUR.2010.08.058
Improved cycling stability of silicon thin film electrodes through patterning for high energy density lithium batteries
Xingcheng Xiao (2011)
Nano Lett
H. Yang (2012)
10.1021/JZ201456P
Design and Tailoring of a Three-Dimensional TiO2–Graphene–Carbon Nanotube Nanocomposite for Fast Lithium Storage
L. Shen (2011)
10.1016/J.SSI.2008.12.015
Determination of the diffusion coefficient of lithium ions in nano-Si
N. Ding (2009)
10.1007/S10704-006-0021-7
Orientation dependence of fracture toughness measured by indentation methods and its relation to surface energy in single crystal silicon
M. Tanaka (2006)
10.1002/adma.201101915
Ultrathin multifunctional oxide coatings for lithium ion batteries.
X. Xiao (2011)
10.1198/000313001750358509
APPL
A. Glen (2001)
10.1002/adma.201202744
Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy.
Matthew T McDowell (2012)
10.1016/S1359-6454(02)00514-1
Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage
P. Limthongkul (2003)
10.1038/nnano.2012.170
In situ atomic-scale imaging of electrochemical lithiation in silicon.
X. Liu (2012)
10.1021/cr900056b
Atomic layer deposition: an overview.
S. George (2010)
Adv
X. C. Xiao (2011)
10.1063/1.328164
Lithium ion conduction in rapidly quenched Li2O‐Al2O3, Li2O‐Ga2O3, and Li2O‐Bi2O3 glasses
A. M. Glass (1980)
Chem
M. D. Groner (2004)
T
X. H. Liu (2013)
Angew
J. Cho (2001)
Electrochem
B. Hertzberg (2011)
10.1016/J.ELECOM.2011.05.011
Ex-situ depth-sensing indentation measurements of electrochemically produced Si-Li alloy films
B. Hertzberg (2011)
Proc
C. F. Herrmann (2005)
Phys
Z. W. Cui (2013)
Phys
U. Gosele (1982)
Modell
Y. H. An (2013)
Adv
R. Yi (2013)
10.1016/S0169-4332(00)00842-4
Atomic layer deposition of titanium dioxide from TiCl4 and H2O: investigation of growth mechanism
J. Aarik (2001)
Phys
A. M. Glass (1980)
Nano Lett
X. H. Liu (2011)
10.1039/c2cp22731b
The effect of concentration on Li diffusivity and conductivity in rutile TiO2.
H. Yildirim (2012)
10.1063/1.4792703
High aspect ratio composite structures with 48.5% thermal neutron detection efficiency
Q. Shao (2013)
Adv
Y. He (2011)
Adv
C. J. Yu (2012)
Proc
S. W. Lee (2012)
10.1002/AENM.201100634
Silicon Thin Films as Anodes for High‐Performance Lithium‐Ion Batteries with Effective Stress Relaxation
C. Yu (2012)
10.1021/nl304379k
Two-phase electrochemical lithiation in amorphous silicon.
J. Wang (2013)
Fresenius’ J
O. Anderson (1997)
Chem
S. M. George (2010)
10.1021/nl302841y
Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries.
M. Pharr (2012)
Nat
H. Wu (2012)
Adv
J. L. Goldman (2011)
Nat
X. H. Liu (2012)
10.1016/J.JPOWSOUR.2012.05.004
Quantifying capacity loss due to solid-electrolyte-interphase layer formation on silicon negative electrodes in lithium-ion batteries
Siva P. V. Nadimpalli (2012)
10.1002/adma.201102568
Alumina-coated patterned amorphous silicon as the anode for a lithium-ion battery with high coulombic efficiency.
Y. He (2011)
Redistribution of zinc in MeV-implanted InP studied by SNMS and PIXE/RBS/channelling
H. Krause (1997)
10.1002/1521-3773(20010917)40:18<3367::AID-ANIE3367>3.0.CO;2-A
Zero-Strain Intercalation Cathode for Rechargeable Li-Ion Cell
J. Cho (2001)



This paper is referenced by
10.1016/J.PMATSCI.2017.04.014
Electrochemomechanical degradation of high-capacity battery electrode materials
Sulin Zhang (2017)
10.1149/2.0371704JES
The Effect of Stress on Battery-Electrode Capacity
Giovanna Bucci (2017)
10.1063/1.5060967
Conformality in atomic layer deposition : current status overview of analysis and modelling
Véronique Cremers (2019)
10.1039/C6CC04074H
Towards flexible binderless anodes: silicon/carbon fabrics via double-nozzle electrospinning.
C. Li (2016)
10.1039/C5TA00964B
Interconnected TiOx/carbon hybrid framework incorporated silicon for stable lithium ion battery anodes
M. Wang (2015)
Mechanics of deformation and failure in rechargeable battery materials
Xueju Wang (2016)
10.1038/s41524-020-0315-8
Vulnerable window of yield strength for swelling-driven fracture of phase-transforming battery materials
A. Mesgarnejad (2020)
10.1186/s11671-018-2460-2
Effect of Tungsten Nanolayer Coating on Si Electrode in Lithium-ion Battery
Byung Dae Son (2018)
10.1016/J.NANTOD.2016.04.004
Electrode surface engineering by atomic layer deposition: A promising pathway toward better energy storage
Bilal Ahmed (2016)
10.1039/c5cp01385b
Mitigating mechanical failure of crystalline silicon electrodes for lithium batteries by morphological design.
Yonghao An (2015)
10.1038/s41524-017-0009-z
Chemomechanical modeling of lithiation-induced failure in high-volume-change electrode materials for lithium ion batteries
Sulin Zhang (2017)
Mechanics of Silicon Electrodes in Lithium Ion Batteries
Yonghao An (2014)
10.1039/C7TA02527K
Geometric design of micron-sized crystalline silicon anodes through in situ observation of deformation and fracture behaviors
X. Zhang (2017)
10.1021/ACS.CHEMMATER.7B00701
Quantifying Electrochemical Reactions and Properties of Amorphous Silicon in a Conventional Lithium-Ion Battery Configuration
X. Wang (2017)
10.1021/nn505490u
Structural optimization of 3D porous electrodes for high-rate performance lithium ion batteries.
Jianchao Ye (2015)
10.1021/am5046197
Control of interfacial layers for high-performance porous Si lithium-ion battery anode.
H. Park (2014)
10.4324/9781315153544-24
Coated silicon nanowires for battery applications
Alexandru Vlad (2017)
10.1016/J.MEE.2016.11.013
High aspect ratio and low leakage current carbon nanosheets based high-k nanostructure for energy storage applications
M. Qaid (2017)
10.1039/C7TA03199H
Modeling of internal mechanical failure of all-solid-state batteries during electrochemical cycling, and implications for battery design
Giovanna Bucci (2017)
10.1016/J.ELECTACTA.2017.09.036
Achieving High-Performance Silicon Anodes of Lithium-Ion Batteries via Atomic and Molecular Layer Deposited Surface Coatings: an Overview
Chenyuan Zhu (2017)
10.1021/acs.nanolett.6b02581
Tuning the Outward to Inward Swelling in Lithiated Silicon Nanotubes via Surface Oxide Coating.
J. Wang (2016)
10.1149/2.0271602JES
Fracture Toughness Characterization of Lithiated Germanium as an Anode Material for Lithium-Ion Batteries
Xueju Wang (2016)
10.1016/J.JELECHEM.2014.07.038
Electrochemical lithiation of Si modified TiO2 nanotube arrays, investigated in ionic liquid electrolyte
S. Ivanov (2014)
10.1016/j.jpowsour.2019.227193
Pomegranate-like shell structured Si@C with tunable inner-space as an anode material for lithium-ion battery
G. Mu (2019)
10.1038/srep05623
Scalable Synthesis of Nano-Silicon from Beach Sand for Long Cycle Life Li-ion Batteries
Zachary Favors (2014)
10.1149/1945-7111/abb383
Thermodynamic Origin of Reaction Non-Uniformity in Battery Porous Electrodes and its Mitigation
F. Wang (2020)
Semantic Scholar Logo Some data provided by SemanticScholar