Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

Magnetic Resonance Molecular Imaging With Nanoparticles

G. Lanza, P. Winter, S. Caruthers, A. Morawski, A. Schmieder, K. Crowder, S. Wickline
Published 2004 · Medicine

Save to my Library
Download PDF
Analyze on Scholarcy
Share
Molecular imaging agents are extending the potential of noninvasive medical diagnosis from basic gross anatomic descriptions to complicated phenotypic characterizations based on the recognition of unique cell surface biochemical signatures. Although originally the purview of nuclear medicine, molecular imaging is now a prominent feature of most clinically relevant imaging modalities, in particular magnetic resonance (MR) imaging. MR nanoparticulate agents afford the opportunity not only for targeted diagnostic studies but also for image-monitored site-specific therapeutic delivery, much like the “magic bullet” envisioned by Paul Erhlich 100 years ago. Combining high-resolution MR molecular imaging with drug delivery will facilitate verification and quantification of treatment (ie, rational targeted therapy) and will offer new clinical approaches to many diseases.
This paper references
Molecular Imaging of Angiogenesis in Nascent Vx-2 Rabbit Tumors Using a Novel ανβ3-targeted Nanoparticle and 1.5 Tesla Magnetic Resonance Imaging
P. Winter (2003)
10.1002/MRM.1910230208
Permeability of liposomal membranes to water: Results from the magnetic field dependence of T1 of solvent protons in suspensions of vesicles with entrapped paramagnetic ions
S. Koenig (1992)
10.1016/S1076-6332(03)80221-0
Monitoring stem cell therapy in vivo using magnetodendrimers as a new class of cellular MR contrast agents.
J. Bulte (2002)
10.1002/(SICI)1522-2586(199909)10:3<468::AID-JMRI31>3.0.CO;2-I
Multicenter clinical trial of ultrasmall superparamagnetic iron oxide in the evaluation of mediastinal lymph nodes in patients with primary lung carcinoma
B. Nguyen (1999)
10.1016/b978-1-4160-6250-9.10005-4
Cardiovascular Magnetic Resonance Imaging
F. Gutiérrez (1991)
10.1038/NM0598-623
Detection of tumor angiogenesis in vivo by αvβ3-targeted magnetic resonance imaging
D. A. Sipkins (1998)
10.1148/RG.243035190
MR lymphangiography: imaging strategies to optimize the imaging of lymph nodes with ferumoxtran-10.
M. Harisinghani (2004)
10.1016/S1064-9689(02)00023-5
MR imaging for the noninvasive assessment of atherothrombotic plaques.
Z. Fayad (2003)
10.1161/HC3401.093148
Macrophage Accumulation Associated With Rat Cardiac Allograft Rejection Detected by Magnetic Resonance Imaging With Ultrasmall Superparamagnetic Iron Oxide Particles
S. Kanno (2001)
10.1073/PNAS.96.26.15256
Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination.
J. Bulte (1999)
10.1002/1522-2586(200011)12:5<734::AID-JMRI10>3.0.CO;2-R
MR lymphography using iron oxide nanoparticles in rats: Pharmacokinetics in the lymphatic system after intravenous injection
F. Réty (2000)
10.1148/RADIOLOGY.175.2.2326475
Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging.
R. Weissleder (1990)
10.1016/0005-2736(89)90307-6
Serum opsonins and phagocytosis of saturated and unsaturated phospholipid liposomes.
S. Moghimi (1989)
10.1002/JSO.1139
Interstitial MR lymphangiography for the detection of sentinel lymph nodes
M. Torchia (2001)
10.1161/hc3601.094303
Novel MRI Contrast Agent for Molecular Imaging of Fibrin: Implications for Detecting Vulnerable Plaques
S. Flacke (2001)
10.1002/JMRI.1880070604
Ultrasmall superparamagnetic iron oxide particles (AMI 227) as a blood pool contrast agent for MR angiography: Experimental study in rabbits
P. Loubeyre (1997)
10.1016/S0301-472X(01)00739-1
In vivo imaging of gene and cell therapies.
J. Allport (2001)
10.1002/MRM.1910110211
A liposomal MRI contrast agent: Phosphatid ylethanolamine‐DTPA
C. Grant (1989)
10.1056/NEJMOA022749
Noninvasive detection of clinically occult lymph-node metastases in prostate cancer.
M. Harisinghani (2003)
10.1148/RADIOLOGY.182.2.1732953
Antimyosin-labeled monocrystalline iron oxide allows detection of myocardial infarct: MR antibody imaging.
R. Weissleder (1992)
10.2214/AJR.167.3.8751704
Vascular enhancement with superparamagnetic iron oxide.
D. Van Gansbeke (1996)
10.1016/S0730-725X(00)00116-8
MRI of liver: a comparison of CNR enhancement using high dose and low dose ferumoxide infusion in patients with colorectal liver metastases.
J. Scott (2000)
10.1161/01.CIR.0000044020.27990.32
Targeted Antiproliferative Drug Delivery to Vascular Smooth Muscle Cells With a Magnetic Resonance Imaging Nanoparticle Contrast Agent: Implications for Rational Therapy of Restenosis
G. Lanza (2002)
10.1038/74464
Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells
M. Lewin (2000)
10.1021/BC015563U
Tat peptide directs enhanced clearance and hepatic permeability of magnetic nanoparticles.
P. Wunderbaldinger (2002)
10.1097/00002142-199500730-00002
Basic Principles of MR Contrast
K. Nelson (1995)
10.1016/S0142-9612(02)00440-4
Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating.
C. Wilhelm (2003)
10.1126/SCIENCE.1070200
Tumor Regression by Targeted Gene Delivery to the Neovasculature
J. Hood (2002)
MR imaging in the evaluation of hepatic metastases.
K. Imam (2000)
10.1016/S0730-725X(98)00141-6
Paramagnetic liposomes as MRI contrast agents: influence of liposomal physicochemical properties on the in vitro relaxivity.
S. Fossheim (1999)
10.1002/mrm.10532
Improved molecular imaging contrast agent for detection of human thrombus
P. Winter (2003)
10.1002/JMRI.1880080323
Sequential use of ferumoxide particles and gadolinium chelate for the evaluation of focal liver lesions on MRI
R. Semelka (1998)
10.1148/RADIOLOGY.193.2.7972768
AMI-227-enhanced MR lymphography: usefulness for differentiating reactive from tumor-bearing lymph nodes.
P. Vassallo (1994)
10.1162/153535003322750664
A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI.
B. Moffat (2003)
10.1161/01.CIR.0000093185.16083.95
Molecular Imaging of Angiogenesis in Early-Stage Atherosclerosis With &agr;v&bgr;3-Integrin–Targeted Nanoparticles
P. Winter (2003)
10.1002/jmri.1086
A targeted contrast agent for magnetic resonance imaging of thrombus: Implications of spatial resolution
L. Johansson (2001)
10.1007/s005350070028
SPIO-MRI in the detection of hepatocellular carcinoma
T. Araki (2000)
10.1161/01.CIR.0000127034.50006.C0
In Vivo Molecular Imaging of Acute and Subacute Thrombosis Using a Fibrin-Binding Magnetic Resonance Imaging Contrast Agent
René M. Botnar (2004)
10.1016/0730-725X(91)90425-L
Gadolinium-labeled liposomes containing amphiphilic Gd-DTPA derivatives of varying chain length: targeted MRI contrast enhancement agents for the liver.
G. Kabalka (1991)
10.1002/mrm.20010
Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI
A. Morawski (2004)
10.1161/01.CIR.0000068315.98705.CC
Accumulation of Ultrasmall Superparamagnetic Particles of Iron Oxide in Human Atherosclerotic Plaques Can Be Detected by In Vivo Magnetic Resonance Imaging
M. E. Kooi (2003)
10.1007/s005350070022
Tumor-detecting capacity and clinical usefulness of SPIO-MRI in patients with hepatocellular carcinoma
H. Nakamura (2000)
10.1007/978-3-7091-9266-5_4
Magnetite as a potent contrast-enhancing agent in magnetic resonance imaging to visualize blood-brain barrier disruption.
J. Bulte (1993)
10.1006/JCIS.1998.6053
Synthesis of Iron Oxide Nanoparticles Used as MRI Contrast Agents: A Parametric Study.
Babes (1999)
10.1097/00004424-199510000-00006
Cellular Uptake and Trafficking of a Prototypical Magnetic Iron Oxide Label In Vitro
E. Schulze (1995)
10.1002/JMRI.1880070629
Uptake of dextran‐coated monocrystalline iron oxides in tumor cells and macrophages
A. Moore (1997)
10.1097/00004424-199512000-00003
Characterization of Reactive Versus Tumor-Bearing Lymph Nodes with Interstitial Magnetic Resonance Lymphography in an Animal Model
P. Vassallo (1995)
10.1002/MRM.1910360313
Contribution of Sinerem® used as blood‐pool contrast agent: Detection of cerebral blood volume changes during apnea in the rabbit
I. Berry (1996)
10.1002/mrm.10406
MR molecular imaging of the Her‐2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles
D. Artemov (2003)
10.1002/jmri.10425
Ferumoxide‐enhanced MR imaging of hepatocellular carcinoma: Correlation with histologic tumor grade and tumor vascularity
H. Kato (2004)
10.1148/RADIOL.2281020638
Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents.
J. Frank (2003)
10.1148/RADIOLOGY.180.3.1871273
Experimental hepatocellular carcinoma: MR receptor imaging.
P. Reimer (1991)
10.1021/BC980125H
High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates.
L. Josephson (1999)
10.1148/RADIOLOGY.214.2.R00FE19568
Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model.
A. Moore (2000)
10.1021/BC0155521
Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture.
H. W. Kang (2002)
10.2214/AJR.155.6.2122660
MR receptor imaging: ultrasmall iron oxide particles targeted to asialoglycoprotein receptors.
R. Weissleder (1990)
10.1002/1522-2586(200006)11:6<647::AID-JMRI11>3.0.CO;2-F
Improved tissue characterization of focal liver lesions with ferumoxide‐enhanced T1 and T2‐weighted MR imaging
M. Nakayama (2000)
10.1097/00004728-199601000-00011
Ultrasmall superparamagnetic iron oxide to enhance MRA of the renal and coronary arteries: studies in human patients.
A. Stillman (1996)
10.1016/S0022-1759(01)00433-1
Normal T-cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived superparamagnetic nanoparticles.
C. H. Dodd (2001)
10.2337/DIABETES.53.6.1459
Tracking the recruitment of diabetogenic CD8+ T-cells to the pancreas in real time.
A. Moore (2004)
10.1002/JMRI.1880060205
Contrast enhancement in experimental radiation‐induced liver injury: Comparison of hepatocellular and reticuloendothelial particulate contrast agents
M. Stiskal (1996)
10.1182/BLOOD-2004-06-2222
Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model.
S. Anderson (2005)
10.1101/SQB.2002.67.285
Targeted delivery of mutant Raf kinase to neovessels causes tumor regression.
J. D. Hood (2002)
10.1016/S1076-6332(98)80097-4
Enhanced detection of thrombi with a novel fibrin-targeted magnetic resonance imaging agent.
G. Lanza (1998)
10.1002/JMRI.1880070132
MR angiography with an ultrasmall superparamagnetic iron oxide blood pool agent
Y. Anzai (1997)
10.1016/S1076-6332(03)80422-1
Ultrasmall superparamagnetic iron oxide-enhanced MR imaging of atherosclerotic plaque in hyperlipidemic rabbits.
S. Ruehm (2002)
10.1162/153535002320162769
Annexin V-CLIO: a nanoparticle for detecting apoptosis by MRI.
Eyk A Schellenberger (2002)



This paper is referenced by
10.1039/C7CS00612H
Ratiometric optical nanoprobes enable accurate molecular detection and imaging.
X. Huang (2018)
10.12677/MD.2013.31004
包裹液态氟碳超声造影剂的研究进展 Progress of Ultrasound Contrast Agent Containing Liquid Perfluorocarbons
曹众 (2013)
10.1038/nbt1121
In vivo imaging platform for tracking immunotherapeutic cells
E. Ahrens (2005)
10.1163/156855207782515030
Gd nanoparticulates: from magnetic resonance imaging to neutron capture therapy
Parvesh Sharma (2007)
10.1007/s12192-008-0043-3
In vivo molecular imaging of vascular stress
M. Wick (2008)
10.1016/J.TCM.2007.05.002
Targeting of vulnerable plaque macrophages with polymer-based nanostructures.
P. Brož (2007)
10.1002/anie.201503417
Synthesis and Evaluation of Gd(III) -Based Magnetic Resonance Contrast Agents for Molecular Imaging of Prostate-Specific Membrane Antigen.
S. Banerjee (2015)
10.1002/wnan.33
Nanomedicine for respiratory diseases.
H. Swai (2009)
10.1002/smll.201101059
Fate and toxicity of metallic and metal-containing nanoparticles for biomedical applications.
Y. Li (2011)
10.1007/978-1-0716-0838-8_6
Inorganic Nanoparticles and Their Strategies to Enhance Brain Drug Delivery
E. Gallardo-Toledo (2020)
10.1142/9781860949074_0018
Magnetic Nanoparticles as Drug Carriers
U. O. Häfeli (2006)
Avaliação morfológica de baço, linfonodo e fígado de macacos-prego cebus apella tratados com nanopartículas magnéticas recobertas com DMSA
S. V. Braz (2008)
10.1016/j.msec.2017.08.018
Optimization of the composition and dosage of PEGylated polyethylenimine-entrapped gold nanoparticles for blood pool, tumor, and lymph node CT imaging.
Yue Wang (2018)
Progress of Ultrasound Contrast Agent Containing Liquid Perfluorocarbons
Zhong Cao (2013)
10.1097/RLI.0000000000000193
Contrast Media for X-ray and Magnetic Resonance Imaging: Development, Current Status and Future Perspectives
T. Frenzel (2015)
10.1007/s12350-010-9240-4
Molecular imaging with contrast enhanced ultrasound
Scott M. Chadderdon (2010)
10.1007/s12975-011-0130-0
Advances in MRI-Based Detection of Cerebrovascular Changes after Experimental Traumatic Brain Injury
R. Dijkhuizen (2011)
10.3390/molecules25030653
SiO2-PVA-Fe(acac)3 Hybrid Based Superparamagnetic Nanocomposites for Nanomedicine: Morpho-textural Evaluation and In Vitro Cytotoxicity Assay
A. Putz (2020)
10.1007/1-4020-4384-8_19
Targeted Nanoparticles for Molecular Imaging and Therapy
S. Caruthers (2006)
10.1007/978-3-662-48544-6_10
Multifunctional Liposomes for Imaging-Guided Therapy
Xiuli Yue (2016)
10.1088/1468-6996/10/3/034602
Manganese oxide nanoparticle-assisted laser desorption/ionization mass spectrometry for medical applications
S. Taira (2009)
10.2174/1875933501103010010
State of Art on Bioimaging by Nanoparticles in Hyperthermia and Thermometry: Visualization of Tissue Protein Targeting
R. Sharma (2011)
10.1016/j.msec.2015.03.007
Development of Gd(III) porphyrin-conjugated chitosan nanoparticles as contrast agents for magnetic resonance imaging.
T. Jahanbin (2015)
10.1007/s00117-006-1451-y
Molekulare und parametrische Bildgebung mit Eisenoxiden
L. Matuszewski (2006)
Visualización de liposomas por resonancia magnética: una oportunidad para mejorar las terapias liposomales antitumorales
D. M. Bedoya (2012)
10.1021/bc300009t
Synthesis and evaluation of a peptide targeted small molecular Gd-DOTA monoamide conjugate for MR molecular imaging of prostate cancer.
X. Wu (2012)
10.1021/nn800034w
Synthesis, characterization, and in vitro testing of superparamagnetic iron oxide nanoparticles targeted using folic Acid-conjugated dendrimers.
Kevin J. Landmark (2008)
10.1016/S1879-8497(08)72872-3
Techniques d'imagerie moléculaire et métabolique en imagerie par résonance magnétique nucléaire
M. Zanca (2008)
10.1002/med.21252
Medicinal Chemistry Based Approaches and Nanotechnology‐Based Systems to Improve CNS Drug Targeting and Delivery
P. Vlieghe (2013)
10.1039/C3RA45400B
Gadolinium-loaded polychelating amphiphilic polymer as an enhanced MRI contrast agent for human multiple myeloma and non Hodgkin's lymphoma (human Burkitt's lymphoma)
D. Kozłowska (2014)
10.1007/978-0-387-76554-9_2
Multifunctional Polymeric Nanosystems for Tumor-Targeted Delivery
P. Magadala (2008)
10.1002/wnan.9
Anti-angiogenic perfluorocarbon nanoparticles for diagnosis and treatment of atherosclerosis.
S. Caruthers (2009)
See more
Semantic Scholar Logo Some data provided by SemanticScholar