Online citations, reference lists, and bibliographies.
← Back to Search

Molecular Genetics Of The Arbuscular Mycorrhizal Symbiosis.

M. Parniske
Published 2004 · Biology, Medicine

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
During arbuscular mycorrhiza (AM) development, fungal hyphae grow throughout root epidermal, exodermal and cortical cell layers to reach the inner cortex where the symbiosis' functional units, the arbuscles, develop. Three essential components of a plant signalling network, a receptor-like kinase, a predicted ion-channel and a calmodulin-dependent protein kinase have been identified. A detailed morphological study of symbiotic plant mutants revealed that different subsets of plant genes support the progress of fungal infection in successive root cell layers. Moreover, evidence of a diffusible fungal signalling factor that triggers gene activation in the root has recently been obtained.
This paper references
10.1111/J.1469-8137.1987.TB00175.X
THE DISTRIBUTION OF MYCORRHIZAS AMONG FAMILIES OF VASCULAR PLANTS.
E. Newman (1987)
10.1016/0168-9452(89)90169-6
First report of non-mycorrhizal plant mutants (Myc−) obtained in pea (Pisum sativum L.) and fababean (Vicia faba L.)
G. Duc (1989)
10.1111/J.1469-8137.1991.TB01014.X
Interactions between three alfalfa nodulation genotypes and two Glomus species.
S. Bradbury (1991)
10.1111/J.1469-8137.1993.TB03907.X
Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during pre-infection stages.
M. Giovannetti (1993)
10.1073/PNAS.91.25.11841
Four hundred-million-year-old vesicular arbuscular mycorrhizae.
W. Remy (1994)
10.1139/B95-292
Cellular and molecular approaches in the characterization of symbiotic events in functional arbuscular mycorrhizal associations
V. Gianinazzi-Pearson (1995)
10.1038/378626A0
A phosphate transporter from the mycorrhizal fungus Glomus versiforme
M. Harrison (1995)
10.1016/0168-9452(95)04229-N
Selection of nodulation and mycorrhizal mutants in the model plant Medicago truncatula (Gaertn.) after γ-ray mutagenesis
M. Sagan (1995)
10.1105/tpc.8.10.1871
Plant Cell Responses to Arbuscular Mycorrhizal Fungi: Getting to the Roots of the Symbiosis.
V. Gianinazzi-Pearson (1996)
10.1016/0168-9452(96)04427-5
A nodulation (nod^+fix^-) mutant of Phaseolus vulgaris L.has nodule like structures lacking peripheral vascular bundles (Pvb^-) and is resistant to mycorrhizal infection (myc^-)
S. Shirtliffe (1996)
10.1046/J.1469-8137.1997.00739.X
Appressorium formation by AM fungi on isolated cell walls of carrot roots
G. Nagahashi (1997)
10.1073/PNAS.94.10.5467
Expression of early nodulin genes in alfalfa mycorrhizae indicates that signal transduction pathways used in forming arbuscular mycorrhizae and Rhizobium-induced nodules may be conserved.
P. van Rhijn (1997)
10.1007/s004380050831
Symbiotic mutants deficient in nodule establishment identified after T-DNA transformation of Lotus japonicus
L. Schauser (1998)
10.1094/MPMI.1998.11.7.684
Nodule Organogenesis and Symbiotic Mutants of the Model Legume Lotus japonicus
K. Szczyglowski (1998)
10.1094/MPMI.1998.11.9.933
Mycorrhiza Mutants of Lotus japonicus Define Genetically Independent Steps During Symbiotic Infection
E. Wegel (1998)
10.1038/46058
A plant regulator controlling development of symbiotic root nodules
L. Schauser (1999)
10.1094/MPMI.2000.13.10.1109
The Lotus japonicus LjSym4 gene is required for the successful symbiotic infection of root epidermal cells.
P. Bonfante (2000)
10.1126/SCIENCE.289.5486.1920
Glomalean fungi from the Ordovician.
D. Redecker (2000)
10.1104/PP.124.3.949
Carbon metabolism and transport in arbuscular mycorrhizas.
B. Bago (2000)
10.1094/MPMI.2000.13.6.693
The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates.
M. Buée (2000)
10.1093/PCP/41.6.726
Isolation of two different phenotypes of mycorrhizal mutants in the model legume plant Lotus japonicus after EMS-treatment.
K. Senoo (2000)
10.1007/PL00013953
Characterization of Mycorrhizas Formed by Glomus sp. on Roots of Hypernodulating Mutants of Lotus japonicus
M. Zakaria Solaiman (2000)
10.1105/tpc.12.9.1647
Four Genes of Medicago truncatula Controlling Components of a Nod Factor Transduction Pathway
R. Catoira (2000)
10.1017/S0021859601001101
Effect of genotype of Trifolium repens on mycorrhizal symbiosis with Glomus mosseae
W. Eason (2001)
10.1073/pnas.251491698
Medicago truncatula plants overexpressing the early nodulin gene enod40 exhibit accelerated mycorrhizal colonization and enhanced formation of arbuscules
C. Staehelin (2001)
10.1385/MB:18:1:25
Biolistic transformation of arbuscular mycorrhizal fungi
L. Harrier (2001)
10.1017/S0953756201005196
A new fungal phylum, the Glomeromycota: phylogeny and evolution * * Dedicated to Manfred Kluge (Tech
A. Schuler (2001)
10.1094/MPMI.2001.14.10.1140
A phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment.
I. Maldonado-Mendoza (2001)
10.1007/s005720000090
EST-library construction using spore RNA of the arbuscular mycorrhizal fungus Gigaspora rosea
M. Stommel (2001)
10.1038/414745a
Evidence for the evolution of multiple genomes in arbuscular mycorrhizal fungi
G. Kuhn (2001)
10.1038/35106601
A phosphate transporter expressed in arbuscule-containing cells in potato
C. Rausch (2001)
10.1094/MPMI.2001.14.6.737
Medicago truncatula ENOD11: a novel RPRP-encoding early nodulin gene expressed during mycorrhization in arbuscule-containing cells.
E. Journet (2001)
10.1111/J.1574-6968.2001.TB10506.X
Expressed genes in the extraradical hyphae of an arbuscular mycorrhizal fungus, Glomus intraradices, in the symbiotic phase.
H. Sawaki (2001)
10.1104/PP.127.3.1287
The Glyoxylate Cycle in an Arbuscular Mycorrhizal Fungus. Carbon Flux and Gene Expression
P. Lammers (2001)
10.1046/J.1469-8137.2001.00140.X
Analysis of arbuscular mycorrhizas using symbiosis-defective plant mutants
J. F. Marsh (2001)
10.1046/J.1365-313X.2001.01113.X
Identification of a novel genetically controlled step in mycorrhizal colonization: plant resistance to infection by fungal spores but not extra-radical hyphae.
R. David-Schwartz (2001)
10.1046/J.1469-8137.2002.00424.X
Dual requirement of the LjSym4 gene for mycorrhizal development in epidermal and cortical cells of Lotus japonicus roots.
M. Novero (2002)
10.1007/978-94-017-1284-2_13
Early developmentally regulated genes in the arbuscular mycorrhizal fungus Glomus mosseae : identification of GmGIN1, a novel gene with homology to the C-terminus of metazoan hedgehog proteins
N. Requena (2002)
10.1046/J.1469-8137.2002.00508.X
Targeted inoculation of Medicago truncatula in vitro root cultures reveals MtENOD11 expression during early stages of infection by arbuscular mycorrhizal fungi.
M. Chabaud (2002)
10.1105/tpc.004861
A Phosphate Transporter from Medicago truncatula Involved in the Acquisition of Phosphate Released by Arbuscular Mycorrhizal Fungi Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.004861.
M. Harrison (2002)
10.1038/nature00842
A receptor kinase gene regulating symbiotic nodule development
G. Endré (2002)
10.1038/nature00841
A plant receptor-like kinase required for both bacterial and fungal symbiosis
S. Stracke (2002)
10.1016/S1360-1385(02)02356-7
Evolution of signal transduction in intracellular symbiosis.
C. Kistner (2002)
10.1038/nature01207
Shoot control of root development and nodulation is mediated by a receptor-like kinase
L. Krusell (2002)
10.1073/pnas.202474599
Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis
U. Paszkowski (2002)
10.1093/icb/42.2.295
Investigation of Four Classes of Non-nodulating White Sweetclover (Melilotus alba annua Desr.) Mutants and Their Responses to Arbuscular-Mycorrhizal Fungi1
M. Lum (2002)
10.1139/B02-066
A model for the development of the rhizobial and arbuscular mycorrhizal symbioses in legumes and its use to understand the roles of ethylene in the establishment of these two symbioses
F. Guinel (2002)
10.1126/SCIENCE.1077937
Long-Distance Signaling in Nodulation Directed by a CLAVATA1-Like Receptor Kinase
I. Searle (2002)
10.1128/AEM.68.4.1919-1924.2002
Towards Growth of Arbuscular Mycorrhizal Fungi Independent of a Plant Host
U. Hildebrandt (2002)
10.1007/s00572-002-0189-2
Effect of mutations in the pea genes Sym33 and Sym40
Lidia M. Jacobi (2002)
10.1094/MPMI.2002.15.1.17
Root, root hair, and symbiotic mutants of the model legume Lotus japonicus.
M. Kawaguchi (2002)
10.1038/nature01231
HAR1 mediates systemic regulation of symbiotic organ development
R. Nishimura (2002)
10.1094/MPMI.2002.15.5.411
Novel aspects of symbiotic nitrogen fixation uncovered by transcript profiling with cDNA arrays.
Gillian Colebatch (2002)
10.1093/NAR/GKF685
Exploring root symbiotic programs in the model legume Medicago truncatula using EST analysis.
E. Journet (2002)
10.1104/pp.011882
A Diffusible Factor from Arbuscular Mycorrhizal Fungi Induces Symbiosis-Specific MtENOD11 Expression in Roots ofMedicago truncatula 1
S. Kosuta (2003)
10.1104/pp.102.007765
Carbon Export from Arbuscular Mycorrhizal Roots Involves the Translocation of Carbohydrate as well as Lipid
B. Bago (2003)
10.1017/S0953756203008311
Differential expression of Glomus intraradices genes in external mycelium and mycorrhizal roots of tomato and barley.
G. Delp (2003)
10.1104/pp.102.016071
The Sym35 Gene Required for Root Nodule Development in Pea Is an Ortholog of Nin from Lotus japonicus 1
A. Borisov (2003)
10.1105/tpc.014183
Transcript Profiling Coupled with Spatial Expression Analyses Reveals Genes Involved in Distinct Developmental Stages of an Arbuscular Mycorrhizal Symbiosis Online version contains Web-only data. Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tp
Jinyuan Liu (2003)
10.1038/425569a
Plant biology: Locks, keys and symbioses
M. Parniske (2003)
10.1093/NAR/GKG119
MtDB: a database for personalized data mining of the model legume Medicago truncatula transcriptome
A. Lamblin (2003)
10.1094/MPMI.2003.16.4.306
Transcriptional changes in response to arbuscular mycorrhiza development in the model plant Medicago truncatula.
A. Wulf (2003)
10.1038/nature02045
A receptor kinase gene of the LysM type is involved in legumeperception of rhizobial signals
E. Madsen (2003)
10.1094/MPMI.2003.16.5.382
Isolation of a premycorrhizal infection (pmi2) mutant of tomato, resistant to arbuscular mycorrhizal fungal colonization.
Rakefet David-Schwartz (2003)
10.1038/nature02039
Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases
S. Radutoiu (2003)
10.1104/pp.102.017384
A TILLING Reverse Genetics Tool and a Web-Accessible Collection of Mutants of the Legume Lotus japonicus 1
J. Perry (2003)
10.1126/SCIENCE.1090074
LysM Domain Receptor Kinases Regulating Rhizobial Nod Factor-Induced Infection
E. Limpens (2003)
10.1023/A:1020253525838
Expression in an arbuscular mycorrhizal fungus of genes putatively involved in metabolism, transport, the cytoskeleton and the cell cycle
J. Jun (2004)
10.1126/SCIENCE.1093038
A Putative Ca2+ and Calmodulin-Dependent Protein Kinase Required for Bacterial and Fungal Symbioses
J. Levy (2004)
10.1038/nrm1424
Calcium, kinases and nodulation signalling in legumes
G. Oldroyd (2004)
10.1016/J.FGB.2003.10.011
The arbuscular mycorrhizal fungus Glomus intraradices is haploid and has a small genome size in the lower limit of eukaryotes.
M. Hijri (2004)
10.1111/J.1469-8137.2004.01123.X
Distinct roles of Lotus japonicus SYMRK and SYM15 in root colonization and arbuscule formation.
K. Demchenko (2004)
10.1073/PNAS.0400595101
A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: Gene identification by transcript-based cloning.
R. Mitra (2004)
10.1126/SCIENCE.1092986
Medicago truncatula DMI1 Required for Bacterial and Fungal Symbioses in Legumes
J. Ané (2004)
10.1038/nature02290
Organization of genetic variation in individuals of arbuscular mycorrhizal fungi
T. Pawlowska (2004)



This paper is referenced by
10.1101/2021.03.11.434983
The Sugar Porter gene family of Piriformospora indica: Nomenclature, Transcript Profiling and Characterization
S. Raj (2021)
10.1007/978-3-030-36248-5_5
Symbiotic Signaling: Insights from Arbuscular Mycorrhizal Symbiosis
R. Dhanker (2020)
10.1007/978-3-030-49924-2_7
7 Genetics and Genomics Decipher Partner Biology in Arbuscular Mycorrhizas
L. Lanfranco (2020)
10.1007/s13205-020-2105-x
Identification of the key genes involved in the regulation of symbiotic pathways induced by Metarhizium anisopliae in peanut (Arachis hypogaea) roots
Feng Wang (2020)
10.1016/j.rhisph.2020.100191
Substrate-associated mycorrhizal fungi promote changes in terpene composition, antioxidant activity, and enzymes in Curcuma longa L. acclimatized plants
Meire Pereira de Souza Ferrari (2020)
10.3390/genes10010059
Cysteine-Rich Receptor-Like Kinase Gene Family Identification in the Phaseolus Genome and Comparative Analysis of Their Expression Profiles Specific to Mycorrhizal and Rhizobial Symbiosis
Elsa-Herminia Quezada (2019)
10.1016/J.PMPP.2017.11.007
AMF: The future prospect for sustainable agriculture
Supratim Basu (2018)
10.1007/s11105-018-1077-z
The Role of MPK6 as Mediator of Ethylene/Jasmonic Acid Signaling in Serendipita indica-Colonized Arabidopsis Roots
R. Daneshkhah (2018)
Anatomic and Morphologic Relations Developed Between Plants Roots and Arbuscular Mycorrhizal Fungi ( AFM ) During The Establishment of Mycorrhizal Symbiosis : A Review
J. Nunes (2018)
10.1007/978-981-10-5514-0_16
Linking Plant Nutritional Status to Plant-AMF Interactions
A. Bertolazi (2018)
10.1016/j.jplph.2018.06.010
Sensing environmental and developmental signals via cellooligomers.
R. Oelmüller (2018)
10.3389/fpls.2017.01921
W342F Mutation in CCaMK Enhances Its Affinity to Calmodulin But Compromises Its Role in Supporting Root Nodule Symbiosis in Medicago truncatula
Edgard Jauregui (2017)
10.1007/978-3-319-55729-8_10
Adaptation to Phosphate Stress by N 2 -Fixing Legumes: Lessons to Learn from the Model Medicago truncatula
S. Sulieman (2017)
10.22099/MBRC.2017.4057
Bioinformatic and empirical analysis of a gene encoding serine/threonine protein kinase regulated in response to chemical and biological fertilizers in two maize (Zea mays L.) cultivars
Ida Azad (2017)
Callose-mediated regulation of Plasmodesmata during the establishment of Medicago truncatula-Sinorhizobium meliloti symbiotic interaction
Rocio Gaudioso-Pedraza (2017)
10.1007/978-981-10-7380-9_6
Arbuscular Mycorrhizal Fungi (AMF) for Sustainable Rice Production
P. Panneerselvam (2017)
10.1007/s13199-016-0470-3
Comparative proteomic analysis of leaf tissue from tomato plants colonized with Rhizophagus irregularis
L. I. Peinado-Guevara (2016)
Biological control of Fusarium diseases of wheat by Piriformospora indica
M. Rabiey (2016)
10.3389/fmicb.2016.01083
Functional Characterization of a Hexose Transporter from Root Endophyte Piriformospora indica
M. Rani (2016)
Characterization of SPX exclusive family members in plant Pi sensing and regulation
Wanjun Qi (2016)
10.1016/J.AGEE.2016.05.008
Evidences of inhibited arbuscular mycorrhizal fungal development and colonization in multiple lines of Bt cotton
Xiu-hua Chen (2016)
The role of GRAS-domain proteins in arbuscular mycorrhizal symbiosis
Leonie Luginbuehl (2016)
10.1016/j.jplph.2015.01.002
Functional analysis of duplicated Symbiosis Receptor Kinase (SymRK) genes during nodulation and mycorrhizal infection in soybean (Glycine max).
Arief Indrasumunar (2015)
10.1007/s11274-015-1867-5
Isolation of genes conferring salt tolerance from Piriformospora indica by random overexpression in Escherichia coli
S. Gahlot (2015)
EFFECTS OF CO-INOCULATION OF ARBUSCULAR MYCORRHIZAL FUNGI AND RHIZOBIUM ON THE TRIPARTITE ASSOCIATION WITH FIELD PEA (Pisum sativum) AND LENTIL (Lens culinaris) UNDER SASKATCHEWAN FIELD CONDITIONS
Anisha Biswaray (2015)
10.1016/J.BAAE.2014.08.004
Early responses of wild plant seedlings to arbuscular mycorrhizal fungi and pathogens
Corina Del Fabbro (2014)
10.1007/978-3-642-54276-3_6
Mycorrhizosphere: The Role of PGPR
R. Azcón (2014)
10.1016/j.tplants.2014.06.007
Nutrient transfer in plant-fungal symbioses.
S. W. Behie (2014)
DIVERSIDAD Y CARACTERIZACIÓN MORFOLÓGICA DE HONGOS MICORRÍCICOS NATIVOS ASOCIADOS CON TOMATE DE CASCARA (Physalis ixocarpa Brot) EN ARTEAGA, COAHUILA, MÉXICO.
H. Hernandez (2014)
10.1007/s11676-014-0493-7
Characterization of expressed genes in the establishment of arbuscular mycorrhiza between Amorpha fruticosa and Glomus mosseae
Fuqiang Song (2014)
SUMMARY: ARBUSCULAR MYCORRHIZA AND PLANT TOLERANCE TO STRESS
Muriel da Silva Folli-Pereira (2013)
10.1086/668224
Consequences of Mycorrhizal Colonization for Piriqueta Morphotypes under Drought Stress
P. Sochacki (2013)
See more
Semantic Scholar Logo Some data provided by SemanticScholar