Online citations, reference lists, and bibliographies.
← Back to Search

Gap Maps, Diffraction Losses, And Exciton–polaritons In Photonic Crystal Slabs

L. Andreani, D. Gerace, M. Agio
Published 2004 · Physics

Cite This
Download PDF
Analyze on Scholarcy
Share
Abstract A theory of photonic crystal (PhC) slabs is described, which relies on an expansion in the basis of guided modes of an effective homogeneous waveguide and on treating the coupling to radiative modes and the resulting losses by perturbation theory. The following applications are discussed for the case of a high-index membrane: gap maps for photonic lattices in a waveguide; exciton–polariton states, when the PhC slab contains a quantum well with an excitonic resonance; propagation losses of line-defect modes in W1 waveguides, also in the presence of disorder; the quality factors of photonic nanocavities. In particular, we predict that disorder-induced losses below 0.2 dB/mm can be achieved in state-of-the-art samples by increasing the channel width of W1 waveguides.
This paper references
10.1364/OPEX.12.001622
Losses in single-mode silicon-on-insulator strip waveguides and bends.
Y. Vlasov (2004)
Phys
T. Fujita (1998)
10.1103/PHYSREVB.64.045108
Nearly free-photon approximation for two-dimensional photonic crystal slabs
T. Ochiai (2001)
10.1198/000313001750358509
APPL
A. Glen (2001)
Electron
M. Notomi (2002)
Electron and photon confinement in semiconductor nanostructures : Varenna on Como Lake, Villa Monastero, 25 June - 5 July 2002
B. Deveaud (2003)
10.1002/1521-3951(200211)234:1<139::AID-PSSB139>3.0.CO;2-J
Photonic bands and radiation losses in photonic crystal waveguides
L. Andreani (2002)
10.1109/JQE.2002.1017603
Photonic bands and gap maps in a photonic crystal slab
L. Andreani (2002)
Phys
T. Ochiai (2001)
10.1088/0268-1242/13/7/003
Strong coupling phenomena in quantum microcavity structures
M. Skolnick (1998)
Semicond
M. S. Skolnick (1998)
Phys
D. M. Whittaker (1999)
10.1007/978-3-662-14324-7
Optical Properties of Photonic Crystals
K. Sakoda (2001)
10.1109/JQE.2002.1017600
Transmission properties of a two-dimensional photonic crystal slab with an excitonic resonance
R. Shimada (2002)
Phys
L. C. Andreani (2002)
10.1002/pssc.200304010
Quantum theory of photonic crystal polaritons
D. Gerace (2004)
10.1103/PHYSREVLETT.69.3314
Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity.
Weisbuch (1992)
10.1103/PhysRevE.69.056603
Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs.
D. Gerace (2004)
Electron
R. Shimada (2002)
10.5040/9781474284028.0024
S
A. Kumar (1824)
10.1103/PHYSREVLETT.87.253902
Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs.
M. Notomi (2001)
10.1103/PHYSREVB.60.2610
Scattering-matrix treatment of patterned multilayer photonic structures
D. Whittaker (1999)
10.1143/JPSJ.70.1137
Polariton Effect in Distributed Feedback Microcavities
A. L. Yablonskii (2001)
10.1109/JQE.2002.1017583
Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs
M. Notomi (2002)
Phys
C. Weisbuch (1992)
Phys
D. Gerace (2004)
10.1364/OL.26.001888
Fabrication of ultralow-loss Si/SiO(2) waveguides by roughness reduction.
K. K. Lee (2001)
10.1038/nature02063
High-Q photonic nanocavity in a two-dimensional photonic crystal
Y. Akahane (2003)
Soc
A. L. Yablonskii (2001)
Electron
L. C. Andreani (2002)
10.1364/OL.29.001897
Disorder-induced losses in photonic crystal waveguides with line defects.
D. Gerace (2004)
10.1103/PHYSREVB.57.12428
Tunable polariton absorption of distributed feedback microcavities at room temperature
T. Fujita (1998)
10.1364/OE.10.000670
Momentum space design of high-Q photonic crystal optical cavities.
K. Srinivasan (2002)
Phys
M. Notomi (2001)
10.1364/OE.11.002927
Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides.
S. McNab (2003)
Phys
D. Gerace (2004)
Photonic Crystals: The Road from Theory to Practice
J. D. Joannopoulos (2001)
10.1063/1.1564295
Intrinsic diffraction losses in photonic crystal waveguides with line defects
L. Andreani (2003)



This paper is referenced by
10.1063/1.3080683
Light scattering and Fano resonances in high-Q photonic crystal nanocavities
M. Galli (2009)
10.1109/JQE.2012.2204960
Novel Dispersion-Adapted Photonic Crystal Cavity With Improved Disorder Stability
K. Welna (2012)
10.1117/12.793323
The influence of photonic crystal parameters on photonic band-gaps
A. Dyogtyev (2008)
10.1016/J.PHOTONICS.2005.09.012
Effects of disorder on propagation losses and cavity Q-factors in photonic crystal slabs
D. Gerace (2005)
10.1117/12.629595
Large second order dispersion in periodical and aperiodical photonic crystal waveguides
A. Petrov (2005)
10.1002/PSSB.200560970
Exciton-polaritons and nanoscale cavities in photonic crystal slabs
L. Andreani (2005)
10.1103/PhysRevB.81.075305
Linear spectrum of a quantum dot coupled to a nanocavity
G. Tarel (2010)
10.1364/OE.17.008676
Backscattering and disorder limits in slow light photonic crystal waveguides.
A. Petrov (2009)
10.1364/OE.18.026613
Low-power continuous-wave generation of visible harmonics in silicon photonic crystal nanocavities.
M. Galli (2010)
10.3929/ETHZ-A-005466098
Nanometer-scale technology and near-field characterization of InP-based planar photonic-crystal devices
R. Wüest (2007)
10.1016/S0079-6638(06)49003-X
Chapter 3 – Photonic crystals
H. Benisty (2006)
10.1103/PhysRevLett.96.127404
Self-tuned quantum dot gain in photonic crystal lasers.
S. Strauf (2006)
10.1364/OE.18.016064
Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor.
S. Portalupi (2010)
10.1016/J.SPMI.2015.11.010
Effect of disorder on the radiative coupling between distant quantum dots embedded in a photonic crystal dimer
J. P. Vasco (2016)
10.1103/PHYSREVB.80.035123
Minimization of out-of-plane losses of photonic crystal membranes
R. Iliew (2009)
10.1109/ICTON.2008.4598596
k-space spectroscopy of photonic crystal slabs
M. Galli (2008)
10.1103/PHYSREVB.84.045423
Deliberate versus intrinsic disorder in photonic crystal nanocavities investigated by resonant light scattering
S. Portalupi (2011)
10.1364/OPEX.13.004939
Low-loss guided modes in photonic crystal waveguides.
D. Gerace (2005)
10.1016/J.PHOTONICS.2009.10.004
GaAs Photonic Crystal Slab Nanocavities: Growth, Fabrication, and Quality Factor
J. Sweet (2010)
10.1117/12.921643
Single and coupled L3 photonic crystal cavities for cavity-QED experiments
C. Bonato (2012)
10.1109/ICTON.2006.248309
Disorder-Induced Losses in Photonic Crystal Slabs
L.C. Andreani (2006)
10.1002/PSSB.200743182
Light–matter interaction in photonic crystal slabs
L. Andreani (2007)
10.1109/LFNM.2005.1553185
The influence of photonic crystal (PHC) parameters on the photonic band-gap (PBG)
A. Dyogtyev (2005)
Theoretical study of integrated grating structures for Silicon Photonics
M. Passoni (2019)
10.15480/882.405
Slow light photonic crystal line-defect waveguides
A. Petrov (2008)
10.1063/1.4890083
Silicon carbide photonic crystal cavities with integrated color centers
G. Calusine (2014)
10.1016/J.PHYSB.2011.12.115
Enhancement of room temperature sub-bandgap light emission from silicon photonic crystal nanocavity by Purcell effect
A. Shakoor (2012)
10.1016/j.photonics.2012.07.003
Far-field emission profiles from L3 photonic crystal cavity modes
C. Bonato (2013)
10.1007/978-3-319-52025-4_6
Strongly Correlated Photons in Nonlinear Nanophotonic Platforms
D. Gerace (2017)
10.1109/ICO-IP.2011.5953794
Nonlinear optics in silicon photonic crystal nanocavities
L. Andreani (2011)
10.1103/PhysRevB.75.235325
Quantum theory of exciton-photon coupling in photonic crystal slabs with embedded quantum wells
D. Gerace (2007)
10.1063/1.2722724
Coupling quantum dot spins to a photonic crystal nanocavitya)
A. Imamoglu (2007)
See more
Semantic Scholar Logo Some data provided by SemanticScholar