Online citations, reference lists, and bibliographies.
← Back to Search

A Case For Biotic Morphogenesis Of Coniform Stromatolites

M. Batchelor, R. V. Burne, B. Henry, M. Jackson
Published 2004 · Geology, Physics

Save to my Library
Download PDF
Analyze on Scholarcy
Share
Mathematical models have recently been used to cast doubt on the biotic origin of stromatolites. Here by contrast we propose a biotic model for stromatolite morphogenesis which considers the relationship between upward growth of a phototropic or phototactic biofilm (v) and mineral accretion normal to the surface (λ). These processes are sufficient to account for the growth and form of many ancient stromatolities. Domical stromatolites form when v is less than or comparable to λ. Coniform structures with thickened apical zones, typical of Conophyton, form when v⪢λ. More angular coniform structures, similar to the stromatolites claimed as the oldest macroscopic evidence of life, form when v\Gg;λ.
This paper references
10.1146/ANNUREV.EARTH.27.1.313
Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks?
J. Grotzinger (1999)
10.1038/416076a
Questioning the evidence for Earth's oldest fossils
M. Brasier (2002)
10.1111/J.1502-3931.1988.TB02083.X
The Proterozoic biosphere : a multidisciplinary study
J. Schopf (1992)
A
J. Bertrand-Sarfati (1985)
Geological Society of America Bulletin
R. Armstrong (1997)
Academy of Sciences of the USSR
S. I. Melinskaya (1971)
10.1130/0016-7606(1999)111<1256:OOGCSI>2.3.CO;2
Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia
H. J. Hofmann (1999)
10.1103/PHYSREVLETT.56.889
Dynamic scaling of growing interfaces.
Kardar (1986)
The Algorithmic Beauty of Seaweeds
J. A. Kaandorp (2001)
10.2307/3514674
Microbialites; organosedimentary deposits of benthic microbial communities
R. V. Burne (1987)
in Stromatolites
M. R. Walter (1976)
Biology and Systematics of Colonial Organisms Systematics Association Special
J B Jackson (1979)
10.1130/0091-7613(1994)022<0387:AOODSO>2.3.CO;2
Abiological origin of described stromatolites older than 3.2 Ga.
D. Lowe (1994)
Palaeontology
V P Maslov (1938)
10.1038/383423A0
An abiotic model for stromatolite morphogenesis
J. Grotzinger (1996)
10.1177/146642407409400210
(b)
Miss A.O. Penney (1974)
BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS
J. C. Dooley (1959)
10.1016/S0378-4371(00)00077-7
Deterministic KPZ model for stromatolite laminae
M. Batchelor (2000)
Ann. Rev. Earth and Planetary Sciences
J P Grotzinger (1999)
10.1097/00010694-196507000-00019
Developments in Sedimentology
G. Amstutz (1965)
10.1007/978-3-662-04339-4
The Algorithmic Beauty of Seaweeds, Sponges and Corals
J. Kaandorp (2001)
Precambrian Research
R J Horodyski (1983)
10.1038/027098a0
Geology
Robert Blair Vocci (1882)
10.1016/0301-9268(83)90083-9
Sedimentary Geology and Stromatolites of the Middle Proterozoic Belt Supergroup, Glacier National Park, Montana
R. J. Horodyski (1983)
E
Y. Cohen (1989)
E
J. Bauld (1992)
10.1126/SCIENCE.11539686
Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia.
J. Schopf (1987)
10.1524/zpch.1996.193.Part_1_2.218a
Fractal Concepts in Surface Growth
G. Vojta (1996)
Microbial mats : physiological ecology of benthic microbial communities
Y. Cohen (1989)
10.1051/EPN/19700109003
Academy of Sciences of the USSR
Victor Borovsky (1970)
10.1177/001452469000101110
"J."
G.G. Stokes (1890)
Phys. Rev. Lett
T A Witten (1400)
Axis and Circumference
S A Wainwright (1988)
10.1063/1.2808215
Fractal concepts in surface growth
Albert-L'aszl'o Barab'asi (1995)
in Stromatolites
J. A. Donaldson (1976)
in Stromatolites
C.L.V. Monty (1976)
10.1016/0301-9268(85)90069-5
Evolution and environmental conditions of Conophyton—jacutophyton associations in the atar dolomite (upper proterozoic, Mauritania)
J. Bertrand-Sarfati (1985)
10.1177/1534650105277713
Ann
Ericka Stricklin-Parker (2005)
10.1177/105345129202700410
MATH
B. M. Fulk (1992)
10.1126/science.270.5241.1482
Scaling Properties of Stretching Ridges in a Crumpled Elastic Sheet
A. Lobkovsky (1995)
Axis and Circumference (Harvard
S. A. Wainwright (1988)
Precambrian Research
J Bertrand-Sarfati (1985)
10.1038/284443A0
Stromatolites 3,400–3,500 Myr old from the North Pole area, Western Australia
M. Walter (1980)
10.1126/SCIENCE.1090163
Self-Assembled Silica-Carbonate Structures and Detection of Ancient Microfossils
J. García-Ruiz (2003)
10.1080/03115518108566999
Stromatolite recognition in ancient rocks: an appraisal of irregularly laminated structures in an Early Archaean chert-barite unit from North Pole, Western Australia
R. Buick (1981)
in G
J. B. Jackson (1979)
Bureau of Mineral Resources Australia, Bulletin Number
M J Jackson (1987)
Palaios
R V Burne (1987)
10.1103/PHYSREVLETT.47.1400
Diffusion-limited aggregation, a kinetic critical phenomenon
T. Witten (1981)
10.1126/SCIENCE.1057204
Photosynthesis-Induced Biofilm Calcification and Calcium Concentrations in Phanerozoic Oceans
G. Arp (2001)
Alcheringa 5 (1986) 161
R. Buick (1545)
Phys
T. A. Witten (1981)
Phys
M. Kardar (1995)
Physica A
M T Batchelor (2000)
10.1007/BF02273525
Morphometry of microstromatolites in calcrete laminar crusts and a fractal model of their growth
E. Verrecchia (1996)
K
H. J. Hofmann (1999)
R
M. R. Walter (1980)



This paper is referenced by
10.1098/rsif.2011.0679
Microbial diversity affects self-organization of the soil–microbe system with consequences for function
J. Crawford (2011)
10.1144/SP448.11
X-ray microtomography as a tool for investigating the petrological context of Precambrian cellular remains
K. Hickman-Lewis (2016)
Recent evaporite deposition associated with microbial mats, Al‐Kharrar supratidal–intertidal sabkha, Rabigh area, Red Sea coastal plain of Saudi Arabia
Taj (2018)
UBIQUITOUS GROWTH OF PALEOARCHEAN BIOFILMS RECORDED IN WHITE CHERT BANDS OF THE BUCK REEF CHERT
M. Tice (2014)
10.1016/J.SEDGEO.2005.12.012
Translation of energy into morphology : Simulation of stromatolite morphospace using a stochastic model
C. Dupraz (2006)
10.1146/ANNUREV-EARTH-040809-152356
Archean Microbial Mat Communities
M. Tice (2011)
10.1016/J.SEDGEO.2017.09.013
Morphological signatures of microbial activity across sediment and light microenvironments of Lake Vanda, Antarctica
T. Mackey (2017)
10.1098/rsif.2011.0516
Pattern formation in stromatolites: insights from mathematical modelling
R. Cuerno (2011)
10.1103/PHYSREVX.3.041012
Biofilm Growth and Fossil Form
A. Petroff (2013)
Aggregation Phenomena in Cyanobacterial , Stromatolite Analogues
A. Petroff (2008)
10.1111/j.1472-4669.2011.00293.x
Analysis of growth directions of columnar stromatolites from Walker Lake, western Nevada.
V. Petryshyn (2011)
10.1016/J.CRPV.2009.03.006
Looking for traces of life in minerals
K. Benzerara (2009)
10.1063/1.5112833
The dynamics of geometric PDEs: Surface evolution equations and a comparison with their small gradient approximations.
C Kabelitz (2019)
10.1007/S11038-006-9091-9
7. Ancient Fossil Record and Early Evolution (ca. 3.8 to 0.5 Ga)
Purificacón López-Garcia (2006)
10.1111/J.1472-4669.2005.00046.X
Abiotic–biotic controls on the origin and development of spicular sinter: in situ growth experiments, Champagne Pool, Waiotapu, New Zealand
K. Handley (2005)
10.1016/J.PALAEO.2015.09.030
Stromatolitic biotic systems in the mid-Triassic of Israel — A product of stress on an epicontinental margin
Aaron Meilijson (2015)
10.1016/J.JOP.2016.05.006
Lakshanhatti stromatolite, India: Biogenic or abiogenic?
Adrita Choudhuri (2016)
10.1146/ANNUREV-EARTH-042711-105327
The Meaning of Stromatolites
T. Bosak (2013)
Micro et nanoanalyses des microfossiles du Protérozoïque et de tapis microbiens fossiles
Alexandre Fadel (2018)
10.1016/j.aop.2009.05.003
Dynamics of curved interfaces
C. Escudero (2009)
10.1016/J.GEOMORPH.2010.12.022
Subaerial freshwater phosphatic stromatolites in Deer Cave, Sarawak — A unique geobiological cave formation
J. Lundberg (2011)
10.1007/s10347-018-0539-y
Recent evaporite deposition associated with microbial mats, Al-Kharrar supratidal–intertidal sabkha, Rabigh area, Red Sea coastal plain of Saudi Arabia
M. A. Aref (2018)
10.1098/rstb.2008.0020
The evolution of inorganic carbon concentrating mechanisms in photosynthesis
J. Raven (2008)
10.2110/palo.2015.014
PUNCTUATED GROWTH OF MICROBIAL CONES WITHIN EARLY CAMBRIAN ONCOIDS, BAYAN GOL FORMATION, WESTERN MONGOLIA
D. T. Wilmeth (2015)
10.1007/978-3-319-99784-1_3
Importance of Prokaryotes in the Functioning and Evolution of the Present and Past Geosphere and Biosphere
B. Ollivier (2018)
10.1007/978-90-481-3799-2_29
Past, Present, and Future: Microbial Mats as Models for Astrobiological Research
J. Foster (2010)
10.1007/978-90-481-8794-2_6
Trace element geochemistry as a tool for interpreting microbialites
G. Webb (2011)
10.3390/GEOSCIENCES9080359
Mechanistic Morphogenesis of Organo-Sedimentary Structures Growing Under Geochemically Stressed Conditions: Keystone to Proving the Biogenicity of Some Archaean Stromatolites?
K. Hickman-Lewis (2019)
10.1111/gbi.12274
Evidence of oxygenic phototrophy in ancient phosphatic stromatolites from the Paleoproterozoic Vindhyan and Aravalli Supergroups, India
T. Sallstedt (2018)
10.2110/JSR.2013.65
Biotic and Abiotic Processes In the Formation and Diagenesis of Permian Dolomitic Stromatolites (Zechstein Group, NE England)
E. Perri (2013)
10.1134/S0869593809050013
Platforms: Shorikha formation of the Turukhansk uplift, Siberia
P. Petrov (2009)
Etude de microbialites lacustres actuels du Mexique : traçage de l’activité biologique et des conditions environnementales de formation
N. Zeyen (2016)
See more
Semantic Scholar Logo Some data provided by SemanticScholar