Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

Diversity Of Bacterial Iron Mineralization

K. Konhauser
Published 1998 · Chemistry

Save to my Library
Download PDF
Analyze on Scholarcy
Share
Abstract Bacterial cells, growing naturally in freshwater and marine environments or experimentally in culture, can precipitate a variety of authigenic iron minerals. With the vast majority of bacteria biomineralization is a two-step process: initially metals are electrostatically bound to the anionic surfaces of the cell wall and surrounding organic polymers, where they subsequently serve as nucleation sites for crystal growth. The biogenic minerals have crystal habits and chemical compositions similar to those produced by precipitation from inorganic solutions because they are governed by the same equilibrium principles that control mineralization of their inorganic counterparts. As the latter stages of mineralization are inorganically driven, the type of biomineral formed is inevitably dependent on the available counter-ions, and hence, the chemical composition of the waters in which the microorganisms are growing. In oxygenated waters, iron hydroxides are a common precipitate and can form passively through the binding of dissolved ferric species to negatively charged polymers or when soluble ferrous iron spontaneously reacts with dissolved oxygen to precipitate as ferric hydroxide on available nucleation sites (e.g. bacteria). Alternatively, the metabolic activity of Fe(II)-oxidizing bacteria can induce ferric hydroxide precipitation as a secondary by-product. Ferric hydroxide may then serve as a precursor for more stable iron oxides, such as goethite and hematite via dissolution–reprecipitation or dehydration, respectively, or it may react with dissolved silica, phosphate or sulphate to form other authigenic mineral phases. Under suboxic to anoxic conditions, ferric hydroxide may be converted to magnetite, siderite, and iron sulphides through various reductive processes associated with organic matter mineralization. Under biologically controlled conditions, where mineralization is completely regulated, magnetotactic bacteria form magnetite and greigite as navigational tools to guide themselves into their preferred habitat. In general, the formation of iron biominerals is not difficult to achieve, bacteria simply provide charged surfaces that bind metals and they excrete metabolic waste products into the surrounding environment that induce mineralization. The ubiquitous presence of bacteria in aquatic systems and their inherent ability to biomineralize, therefore, makes them extremely important agents in driving both modern and ancient geochemical cycles.
This paper references
10.1038/336314A0
Magnetite sans microbes
S. Banerjee (1988)
10.1016/0964-8305(95)00036-5
The role of microorganisms in biosorption of toxic metals and radionuclides
C. White (1995)
10.1016/0301-9268(83)90081-5
Filamentous fossil bacteria from the Archean of Western Australia
S. M. Awramik (1983)
10.1038/310405A0
Structure, morphology and crystal growth of bacterial magnetite
S. Mann (1984)
10.1306/212F8076-2B24-11D7-8648000102C1865D
Siderite Concretions: Indicators of Early Diagenesis in the Gammon Shale (Cretaceous)
D. Gautier (1982)
10.2136/SSSAJ1975.03615995003900050017X
The Mechanism of Phosphate Fixation by Iron Oxides
R. L. Parfitt (1975)
10.1128/AEM.59.3.734-742.1993
Dissimilatory Fe(III) Reduction by the Marine Microorganism Desulfuromonas acetoxidans.
E. Roden (1993)
10.1016/0012-821X(82)90140-6
Paleomagnetic evidence for fossil biogenic magnetite in western Crete
J. Kirschvink (1982)
10.1016/0009-2541(89)90013-2
The 13C12C ratios of siderite and organic matter of a modern metalliferous hydrothermal sediment and their implications for banded iron formations
N. Holm (1989)
10.2475/AJS.268.1.1
Sedimentary pyrite formation
R. Berner (1970)
10.1099/00221287-137-11-2657
Autotrophic and mixotrophic growth of Gallionella ferruginea
L. Hallbeck (1991)
10.1139/M67-202
Influence of clay minerals on microorganisms. I. Montmorillonite and kaolinite on bacteria.
G. Stotzky (1966)
10.1016/0016-7037(83)90213-2
Processes controlling metal ion attenuation in acid mine drainage streams
B. Chapman (1983)
10.1016/0016-7037(81)90250-7
Natural ferrihydrites in surface deposits from Finland and their association with silica
L. Carlson (1981)
10.1146/ANNUREV.MI.38.100184.002503
Biology of iron- and manganese-depositing bacteria.
W. Ghiorse (1984)
10.1180/MINMAG.1994.058.393.14
Schwertmannite, a new iron oxyhydroxy- sulphate from Pyh/isalmi, Finland, and other localities
J. Bigham (1994)
10.1016/0301-9268(89)90062-4
Biogenic Magnetite in Stromatolites. II. Occurrence in Ancient Sedimentary Environments
S. -. Chang (1989)
10.1126/science.273.5277.924
Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001
D. Mckay (1996)
10.1016/0012-821X(78)90065-1
Sulfate reduction and the rate of deposition of marine sediments
R. Berner (1978)
10.1146/ANNUREV.MI.43.100189.001051
Role of cellular design in bacterial metal accumulation and mineralization.
T. Beveridge (1989)
10.1016/0016-7037(89)90005-7
Reactive iron in marine sediments.
D. Canfield (1989)
10.1128/JB.170.2.834-841.1988
Characterization of the bacterial magnetosome membrane.
Y. A. Gorby (1988)
10.1128/AEM.29.6.837-840.1975
Influence of colloidal iron on the respiration of a species of the genus Acinetobacter.
I. C. Rae (1975)
Iron minerals in surface environments.
U. Schwertmann (1992)
10.1038/330208A0
Anaerobes pumping iron
R. Frankel (1987)
10.1016/0016-7037(86)90085-2
Pore water evolution during sediment burial from isotopic and mineral chemistry of calcite, dolomite and siderite concretions
C. D. Curtis (1986)
10.1139/M86-110
Physicochemical roles of soluble metal cations in the outer membrane of Escherichia coli K-12.
F. Ferris (1986)
10.1128/AEM.43.4.924-938.1982
Iron Oxidation and Precipitation of Ferric Hydroxysulfates by Resting Thiobacillus ferrooxidans Cells.
N. Lazaroff (1982)
10.1016/0012-821X(87)90235-4
Magnetotactic bacteria and their magnetofossils in sediments
H. Vali (1987)
Controlled biomineralization of magnetite (Fe3O4) and greigite (Fe3S4) in a magnetotactic bacterium
D. Bazylinski (1995)
10.1007/BF00039172
The oldest records of photosynthesis.
S. M. Awramik (1992)
10.1038/321849A0
Magnetotactic bacteria and single-domain magnetite in hemipelagic sediments
J. Stolz (1986)
10.1016/0198-0149(85)90078-0
Metal deposits associated with bacteria: implications for Fe and Mn marine biogeochemistry
J. P. Cowen (1985)
10.1007/978-1-4899-5034-5_7
Pyrite Formation and Fossil Preservation
D. Canfield (1991)
10.1038/335532A0
Loihi Seamount, Hawaii: a mid-plate volcano with a distinctive hydrothermal system
D. M. Karl (1988)
10.1038/339203A0
Magnetofossil dissolution in a palaeomagnetically unstable deep-sea sediment
H. Vali (1989)
10.1046/J.1365-3091.1997.D01-45.X
Effect of bacteria on the elemental composition of early diagenetic siderite: implications for palaeoenvironmental interpretations
R. J. Mortimer (1997)
10.1016/0009-2541(79)90016-0
Biogeochemistry of bog iron in the New Jersey Pine Barrens
D. Crerar (1979)
10.1016/0025-3227(83)90048-8
Energy dispersive X-ray analysis of the surface of a deep-sea ferromanganese nodule
B. Burnett (1983)
10.1139/M96-055
Microbial metal-binding mechanisms and their relation to nuclear waste disposal
R. McLean (1996)
Microbial precipitation of siderite and protoferrihydrite in a biofilm
J. Sawicki (1995)
10.1128/AEM.58.12.3837-3844.1992
The membrane-induced proton motive force influences the metal binding ability of Bacillus subtilis cell walls.
M. Urrutia Mera (1992)
10.1130/0091-7613(1996)024<0323:DOIASP>2.3.CO;2
DIVERSITY OF IRON AND SILICA PRECIPITATION BY MICROBIAL MATS IN HYDROTHERMAL WATERS, ICELAND : IMPLICATIONS FOR PRECAMBRIAN IRON FORMATIONS
K. Konhauser (1996)
10.1128/AEM.43.6.1464-1472.1982
Isolation and Properties of Ferromanganese-Depositing Budding Bacteria from Baltic Sea Ferromanganese Concretions
W. Ghiorse (1982)
10.1346/CCMN.1994.0420605
Biogenic Nontronite from Marine White Smoker Chimneys
B. Koehler (1994)
10.1126/SCIENCE.7008198
Minerals formed by organisms.
H. Lowenstam (1981)
10.1080/01490458509385929
The role of sulfate‐reducing bacteria in the deposition of sedimentary uranium ores
A. Mohagheghi (1985)
10.1130/0091-7613(1987)15<7:OOSMWB>2.0.CO;2
Occurrence of secondary magnetite within biodegraded oil
C. Mccabe (1987)
10.1128/AEM.42.2.325-335.1981
Binding of metals to cell envelopes of Escherichia coli K-12.
T. Beveridge (1981)
The microbiology of deep-sea hydrothermal vents
D. Karl (1995)
10.1080/01490459509378008
Microbial communities in deep Canadian shield groundwaters—an in situ biofilm experiment
F. Doig (1995)
10.2166/WST.1988.0279
Binding of Metal Ions by Extracellular Polymers of Biofilm Bacteria
G. Geesey (1988)
10.1080/01490459409377975
Accumulation of gold in the sheath of Plectonema terebrans (filamentous marine cyanobacteria)
B. D. Dyer (1994)
10.1007/BF02069123
Magnetotaxis and magnetic particles in bacteria
R. Frankel (1994)
10.1016/0304-8853(80)90409-6
Navigational Compass in Magnetic Bacteria
R. Frankel (1980)
10.1346/CCMN.1986.0340306
Influence of Sulfate on Fe-Oxide Formation: Comparisons with a Stream Receiving Acid Mine Drainage
K. K. Brady (1986)
10.1128/AEM.59.12.4056-4064.1993
Characterization of the Binding of Gallium, Platinum, and Uranium to Pseudomonas fluorescens by Small-Angle X-Ray Scattering and Transmission Electron Microscopy.
S. Krueger (1993)
10.1038/336368A0
Formation of ultrafine-grained magnetite in soils
Barbara A. Maher (1988)
10.1098/rspb.1984.0040
A high resolution electron microscopic investigation of bacterial magnetite. Implications for crystal growth
S. Mann (1984)
10.1038/SCIENTIFICAMERICAN1083-102
The Dead Sea
I. Steinhorn (1983)
10.1306/212F893B-2B24-11D7-8648000102C1865D
Cambrian Phoscrete Profiles, Coated Grains, and Microbial Processes in Phosphogenesis: Georgina Basin, Australia
P. Southgate (1986)
10.1016/0198-0149(81)90124-2
Organic films and microorganisms associated with manganese nodules
B. Burnett (1981)
10.1128/AEM.58.1.405-408.1992
Influence of oxidation state on iron binding by Bacillus licheniformis capsule.
R. J. McLean (1992)
Microbial biomineralization of iron and manganese.
W. C. Ghiorse (1992)
10.4141/CJSS78-001
MICROORGANISMS AND OCHRE DEPOSITS IN FIELD DRAINS OF ONTARIO
K. C. Ivarson (1978)
10.1126/SCIENCE.212.4500.1269
Magnetotactic bacteria at the geomagnetic equator.
R. Frankel (1981)
10.1016/0009-2541(87)90165-3
Bacteria as nucleation sites for authigenic minerals in a metal-contaminated lake sediment
F. G. Ferris (1987)
10.1016/0167-4889(83)90038-1
Fe3O4 precipitation in magnetotactic bacteria
R. Frankel (1983)
10.1002/JEMT.1070270505
Electron microscopic studies of magnetosomes in magnetotactic bacteria
D. Bazylinski (1994)
10.1038/326490A0
Authigenic magnetite formation in suboxic marine sediments
R. Karlin (1987)
10.2113/GSECONGEO.64.4.365
Physical and chemical factors in the formation of marine apatite
Robert A. Gulbrandsen (1969)
10.1021/es00056a005
Use of dissolved h2 concentrations to determine distribution of microbially catalyzed redox reactions in anoxic groundwater.
D. Lovley (1994)
10.1038/320609A0
Iron-silica crystallite nucleation by bacteria in a geothermal sediment
F. Ferris (1986)
10.1111/J.1574-6968.1984.TB01241.X
Binding of a paramagnetic metal cation to Escherichia coli K-12 outer-membrane vesicles
F. Ferris (1984)
10.1016/0009-2541(89)90041-7
Iron oxides in acid mine drainage environments and their association with bacteria
F. G. Ferris (1989)
10.1016/0016-7037(91)90122-L
Reactions forming pyrite and marcasite from solution: I. Nucleation of FeS2 below 100°C
M. Schoonen (1991)
10.1128/AEM.24.5.819-823.1972
Adsorption of colloidal iron by bacteria.
I. Macrae (1972)
10.1128/AEM.41.1.288-297.1981
Iron bacteria in drinking-water distribution systems: elemental analysis of gallionella stalks, using x-ray energy-dispersive microanalysis.
H. Ridgway (1981)
10.1098/RSTB.1981.0089
Physico-chemical aspects of inorganic element transfer through membranes.
R. Williams (1981)
10.1016/0012-821X(91)90047-L
Hydrothermal scavenging at the Mid-Atlantic Ridge: Modification of trace element dissolved fluxes
C. German (1991)
10.1007/978-1-4615-3810-3_11
Magnetite Formation During Microbial Dissimilatory Iron Reduction
D. Lovley (1991)
10.1099/00221287-99-1-19
Water Status of Rhizobia in Relation to their Susceptibility to Desiccation and to their Protection by Montmorillonite
H. Bushby (1977)
10.1007/978-1-4613-0803-4_1
The Structure of Bacteria
T. Beveridge (1989)
Biogeochemistry of acid mine drainage and a method to control acid formation
R.L.P. Kleinmann (1981)
10.1128/AEM.54.6.1472-1480.1988
Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese.
D. Lovley (1988)
10.1128/AEM.56.10.3191-3203.1990
Remobilization of toxic heavy metals adsorbed to bacterial wall-clay composites.
C. Flemming (1990)
10.1007/bf01820961
Rezente marine Eisenerze auf Santorin, Griechenland
H. Puchelt (1973)
10.1130/0091-7613(1984)12<559:UMIDSP>2.0.CO;2
Ultrafine-grained magnetite in deep-sea sediments: Possible bacterial magnetofossils
J. Kirschvink (1984)
10.1139/E94-114
Iron phosphate precipitation by epilithic microbial biofilms in Arctic Canada
K. Konhauser (1994)
10.1139/M88-067
The bacterial surface: general considerations towards design and function.
T. Beveridge (1988)
10.1128/AEM.56.6.1858-1864.1990
Anaerobic Oxidation of Toluene, Phenol, and p-Cresol by the Dissimilatory Iron-Reducing Organism, GS-15.
D. Lovley (1990)
10.1306/C1EA55E4-16C9-11D7-8645000102C1865D
Aeromagnetic detection of diagenetic magnetite over oil fields
T. Donovan (1979)
10.1016/0016-7037(93)90490-N
Characteristics of lacustrine diagenetic iron oxyhydroxides
D. Fortin (1993)
10.1128/JB.143.1.471-480.1980
Chemical basis for selectivity of metal ions by the Bacillus subtilis cell wall.
R. Doyle (1980)
10.1038/318053A0
A small coleoid cephalopod with soft parts from the lower Devonian discovered using radiography
W. Stürmer (1985)
10.1017/S0016756800011080
Diagenetic controls on multiphase pyritization of graptolites
C. Underwood (1994)
10.1038/362834A0
Ferrous iron oxidation by anoxygenic phototrophic bacteria
F. Widdel (1993)
10.1038/320611A0
Fossil bacterial magnetite in deep-sea sediments from the South Atlantic Ocean
N. Petersen (1986)
10.1126/science.229.4715.717
Geomicrobiology of Deep-Sea Hydrothermal Vents
H. Jannasch (1985)
10.1080/01490459709378030
Microbial sulfate reduction within sulfidic mine tailings: Formation of diagenetic Fe sulfides
D. Fortin (1997)
10.1007/978-3-662-26582-6_37
Electron Microscopic Analysis of Metal-Depositing Microorganisms in Surface Layers of Baltic Sea Ferromanganese Concretions
W. Ghiorse (1980)
10.1016/S0009-2541(96)00055-1
Controlled biomineralization of magnetic minerals by magnetotactic bacteria
D. A. Bazylinski (1996)
10.1130/0016-7606(1981)92<147:BOOMAI>2.0.CO;2
Bacterial oxidation of manganese and iron in a modern cold spring
G. E. Mustoe (1981)
10.2307/2259699
Bacteria and Mineral Cycling.
O. W. Heal (1979)
10.2136/SSSAJ1978.03615995004200010011X
The Mechanism of Sulfate Adsorption on Iron Oxides 1
R. L. Parfitt (1978)
10.1139/E85-204
Metal fixation by bacterial cell walls
T. Beveridge (1985)
10.1038/309340A0
Suboxic diagenesis in banded iron formations
J. Walker (1984)
10.1007/978-1-4613-0313-8_36
Possible Biogenic Magnetite Fossils from the Late Miocene Potamida Clays of Crete
S. R. Chang (1985)
10.1099/00221287-136-9-1675
Culture parameters regulating stalk formation and growth rate of Gallionella ferruginea
L. Hallbeck (1990)
10.1346/CCMN.1980.0280405
Natural Occurrence of Feroxyhite (δ′-FeOOH)
L. Carlson (1980)
10.1038/286384A0
South-seeking magnetotactic bacteria in the Southern Hemisphere
R. Blakemore (1980)
10.1080/01490459409377983
Microbiological activity in thermoglacial karst springs, south spitsbergen
Stein-Erik Lauritzen (1994)
10.1038/294442A0
Bacterial origin of East Australian continental margin phosphorites
G. W. O'brien (1981)
10.1080/01490459809378077
Authigenic mineralization and detrital clay binding by freshwater biofilms: The Brahmani river, India
K. Konhauser (1998)
10.1080/11035898209454539
Biogeochemical cycling of mineral-forming elements.
P. Trudinger (1979)
10.1128/AEM.46.5.1118-1124.1983
Denitrification and Assimilatory Nitrate Reduction in Aquaspirillum magnetotacticum.
D. Bazylinski (1983)
10.1080/01490458509385934
Scanning electron microscopy and infrared spectroscopy of iron sediments formed by Thiobacillus ferrooxidans
N. Lazaroff (1985)
10.1130/0091-7613(1988)016<0980:SFIADS>2.3.CO;2
Siderite formation in anoxic deep-sea sediments: A synergetic bacteria controlled process with improtant implications in paleomagnetism
B. Ellwood (1988)
10.1126/science.270.5235.450
Lithoautotrophic Microbial Ecosystems in Deep Basalt Aquifers
T. O. Stevens (1995)
10.1080/01490459509378007
Bacterial sulfate reduction and pyrite formation in a polluted sand aquifer
S. Bottrell (1995)
10.1126/science.203.4387.1355
Magnetite in Freshwater Magnetotactic Bacteria
R. Frankel (1979)
10.1016/0009-2541(94)90018-3
Formation of fine-grained metal and silicate precipitates on a bacterial surface (Bacillus subtilis)
M. Urrutia (1994)
10.1016/0198-0149(86)90100-7
Hydrothermal vents of Explorer Ridge, northeast Pacific
V. Tunnicliffe (1986)
10.1016/0009-2541(87)90073-8
Biogenic influences on the geochemistry of certain ferruginous sediments of hydrothermal origin
N. Holm (1987)
Investigations of subterranean microorganisms. Their importance for performance assessment of radioactive waste disposal
K. Pedersen (1995)
10.1128/AEM.47.5.1080-1083.1984
Interaction of Rhizobium sp. with Toxin-Producing Fungus in Culture Medium and in a Tropical Soil.
M. Habte (1984)
10.1029/94GL02436
Microbial‐mineral floc associated with nascent hydrothermal activity on CoAxial Segment, Juan de Fuca Ridge
S. Juniper (1995)
10.1128/JB.141.3.1399-1408.1980
Ultrastructure of a magnetotactic spirillum.
D. Balkwill (1980)
10.1128/AEM.60.9.3182-3191.1994
Minerals associated with biofilms occurring on exposed rock in a granitic underground research laboratory.
D. Brown (1994)
10.1016/0198-0149(89)90065-4
Hydrothermal and microbial processes at Loihi Seamount, a mid-plate hot-spot volcano
D. Karl (1989)
10.1086/629734
Hydrothermal Plumes and the Delivery of Iron to Banded Iron Formation
Ann E. Isley (1995)
10.1038/343258A0
Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium
S. Mann (1990)
10.1128/AEM.62.9.3405-3412.1996
Bacterial diversity in a deep-subsurface clay environment.
V. Boivin-Jahns (1996)
Filamentous iron-silica deposits from modern and ancient hydrothermal sites
S. Juniper (1988)
10.1016/0016-7037(90)90009-A
A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters
J. M. Blgham (1990)
10.1016/S0883-2927(96)00052-2
Influence of pH on mineral speciation in a bioreactor simulating acid mine drainage
J. Bigham (1996)
10.1029/95RG01305
Deep subsurface microbial processes
D. Lovley (1995)
10.1016/0025-3227(88)90029-1
Hydrothermal oxide and nontronite deposits on seamounts in the eastern Pacific
J. Alt (1988)
10.1016/S0016-7037(97)00027-6
Microbial influence on the oxygen isotopic composition of diagenetic siderite
R. J. Mortimer (1997)
Ability of microbial biomass to sorb radionuclide
M. P. Khovrychev (1994)
10.1038/334518a0
Anaerobic magnetite production by a marine, magnetotactic bacterium
D. Bazylinski (1988)
10.1016/0012-821X(90)90084-B
Structure and morphology of magnetite anaerobically-produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium
N. C. Sparks (1990)
10.1128/AEM.55.5.1249-1257.1989
Metal Interactions with Microbial Biofilms in Acidic and Neutral pH Environments.
F. Ferris (1989)
10.1038/366218A0
Fe304 and Fe3S4 in a bacterium
Dennis A. Bazylizinki (1993)
10.1016/0016-7037(87)90076-7
Dissolution and pyritization of magnetite in anoxie marine sediments
D. Canfield (1987)
10.1144/gsjgs.154.4.0587
The mineralization of dinosaur soft tissue in the Lower Cretaceous of Las Hoyas, Spain
D. Briggs (1997)
10.1128/JB.127.3.1502-1518.1976
Uptake and retention of metals by cell walls of Bacillus subtilis.
T. Beveridge (1976)
10.1128/AEM.61.9.3232-3239.1995
Controlled Biomineralization of Magnetite (Fe(inf3)O(inf4)) and Greigite (Fe(inf3)S(inf4)) in a Magnetotactic Bacterium.
D. Bazylinski (1995)
10.1038/330252A0
Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism
D. Lovley (1987)
10.1128/AEM.60.2.549-553.1994
Mineral precipitation by epilithic biofilms in the speed river, ontario, Canada.
K. Konhauser (1994)
10.1111/J.1574-6941.1996.TB00332.X
A systematic survey for thermophilic fermentative bacteria and archaea in high temperature petroleum reservoirs
Gino S. Grassia (1996)
10.1128/JB.150.3.1438-1448.1982
Major sites of metal binding in Bacillus licheniformis walls.
T. Beveridge (1982)
10.1002/J.1551-8833.1960.TB00600.X
Microbial Concentration of Iron and Manganese in Water With Low Concentrations of These Elements
R. Wolfe (1960)
10.1128/JB.141.2.876-887.1980
Sites of metal deposition in the cell wall of Bacillus subtilis.
T. Beveridge (1980)
10.1346/CCMN.1987.0350103
Effect of Silicate Species on the Transformation of Ferrihydrite into Goethite and Hematite in Alkaline Media
R. M. Cornell (1987)
10.1098/rspb.1987.0055
Ultrastructure and characterization of anisotropic magnetic inclusions in magnetotactic bacteria
S. Mann (1987)
10.1016/S0166-1116(08)71060-4
Chapter 4 Biogeochemistry of Iron
D. Lundgren (1979)
10.1016/0038-0717(88)90062-4
Dynamics of Rhizobium leguminosarum biovar trifolii introduced into soil; the effect of bentonite clay on predation by protozoa
Caroline E. Heynen (1988)
10.1038/325428A0
Evidence for a relationship between hydrocarbons and authigenic magnetite
R. Elmore (1987)
Metal Ions and Bacteria
T. Beveridge (1989)
10.1128/AEM.59.12.4323-4329.1993
Remobilization of Heavy Metals Retained as Oxyhydroxides or Silicates by Bacillus subtilis Cells.
M. Urrutia (1993)
10.1016/0012-8252(93)90058-F
The deep subterranean biosphere
K. Pedersen (1993)
10.4141/CJSS73-046
MICROBIOLOGICAL FORMATION OF BASIC FERRIC SULFATES
K. C. Ivarson (1973)
The community structure of the Middle Cambrian Phyllopod Bed lBurgess Shaler
S. C. Morris (1986)
10.1126/SCIENCE.11539502
3.4-Billion-year-old biogenic pyrites from Barberton, South Africa: sulfur isotope evidence.
H. Ohmoto (1993)
10.1021/ES00010A012
Dissolution and reduction of magnetite by bacteria.
J. Kostka (1995)
10.1016/0016-7037(95)00413-0
Metal sorption to diagenetic iron and manganese oxyhydroxides and associated organic matter: Narrowing the gap between field and laboratory measurements
A. Tessier (1996)
10.1126/science.224.4655.1340
The Association of Iron and Manganese with Bacteria on Marine Macroparticulate Material
J. P. Cowen (1984)
10.1007/978-1-4615-3810-3_5
Anaerobic Production of Single-Domain Magnetite by the Marine, Magnetotactic Bacterium, Strain MV-1
D. Bazylinski (1991)
10.1016/S0958-1669(96)80032-2
Environmental processes mediated by iron-reducing bacteria.
J. Fredrickson (1996)
10.1007/BFB0111320
Mineralization in biological systems
S. Mann (1983)
10.1128/AEM.62.4.1458-1460.1996
Anaerobic, nitrate-dependent microbial oxidation of ferrous iron.
K. L. Straub (1996)
10.1038/361436A0
Reduction of Fe(III) in sediments by sulphate-reducing bacteria
M. L. Coleman (1993)
10.1017/CBO9780511601064.002
The Proterozoic Biosphere: The Proterozoic Biosphere
J. Schopf (1992)
10.1038/371410A0
Deep bacterial biosphere in Pacific Ocean sediments
R. J. Parkes (1994)
10.4319/LO.1978.23.6.1214
Sessile bacteria: An important component of the microbial population in small mountain streams 1
G. Geesey (1978)
10.1016/0009-2541(87)90072-6
Cellular lepidocrocite precipitation and heavy-metal sorption in Euglena sp. (unicellular alga): Implications for biomineralization
H. Mann (1987)
10.1038/302411A0
Morphology and structure of biogenic magnetite particles
T. Matsuda (1983)
10.1016/0016-7037(77)90240-X
Importance of heavy metal-organic matter interactions in natural waters
J. H. Reuter (1977)
10.1038/319489A0
Stromatolites from the 3,300–3,500-Myr Swaziland Supergroup, Barberton Mountain Land, South Africa
G. Byerly (1986)
10.2113/GSECONGEO.68.7.1110
Geology and Stable Isotope Geochemistry of the Biwabik Iron Formation, Northern Minnesota
E. Perry (1973)
10.1038/322169A0
Bacterial scavenging of Mn and Fe in a mid- to far-field hydrothermal particle plume
J. P. Cowen (1986)
10.1038/384055A0
Evidence for life on Earth before 3,800 million years ago
S. Mojzsis (1996)
10.1128/AEM.60.12.4517-4526.1994
Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism.
A. Ehrenreich (1994)
10.1016/0016-7037(94)90355-7
The in vitro formation of placer gold by bacteria
G. Southam (1994)
10.1038/365047A0
Magnetite formation by a sulphate-reducing bacterium
Toshifumi Sakaguchi (1993)
10.1111/J.1502-3931.1985.TB00704.X
Earth's Earliest Biosphere
G. Vidal (1985)
10.1002/J.1551-8833.1960.TB00549.X
Observations and Studies of Crenothrix polyspora (PDF)
R. Wolfe (1960)
10.1111/J.1365-2389.1973.TB02312.X
OCHRE FORMATION IN FIELD DRAINS IN PYRITIC SOILS
B. Trafford (1973)
10.1016/0016-7037(88)90163-9
Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments
D. Lovley (1988)
10.1016/0301-9268(89)90061-2
Biogenic magnetite in stromatolites. I. Occurrence in modern sedimentary environments
J. Stolz (1989)
10.1126/science.213.4513.1245
Microbial Origin of Desert Varnish
R. I. Dorn (1981)
10.1139/M76-142
Cation exchange in cell walls of gram-positive bacteria.
R. Marquis (1976)
10.1139/M83-050
Gallionella from metalimnion in an eutrophic lake: morphology and X-ray energy-dispersive microanalysis of apical cells and stalks
M. Heldal (1983)
Precambrian organic geochemistry - Preservation of the record
J. Hayes (1983)
10.1080/01490458609385946
Mineralogical characteristics of residues produced in microbiological treatment of acidic mine drainages
P. Wichlacz (1986)
10.1002/BEM.2250100303
Magnetite and magnetotaxis in microorganisms.
R. Frankel (1989)
The use of micro-organisms for the remediation of solutions contaminated with actinide elements, other radionuclides, and organic contaminants generated by nuclear fuel cycle activities : Chemistry of the nuclear fuel cycle
L. Macaskie (1996)
10.1007/978-1-4613-0313-8
Magnetite biomineralization and magnetoreception in organisms
J. Kirschvink (1985)
10.1128/AEM.46.3.749-752.1983
Binding of metallic ions to the outer membrane of Escherichia coli.
B. Hoyle (1983)
10.2113/GSECONGEO.74.2.195
Petrology of the Tertiary phosphorite system of Florida
S. R. Riggs (1979)
10.1111/J.1574-6976.1997.TB00320.X
Ferric hydroxide and ferric hydroxysulfate precipitation by bacteria in an acid mine drainage lagoon
Wendy A Clarke (1997)
10.1016/0012-821X(81)90222-3
Electron-optical characterization of bacterial magnetite
K. M. Towe (1981)
10.1007/978-1-4613-0803-4
Bacteria in Nature
R. A. Herbert (1989)
10.1128/AEM.53.11.2636-2641.1987
Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments.
D. Lovley (1987)
10.1038/343161A0
Occurrence of magnetic bacteria in soil
J. Fassbinder (1990)
10.1130/0091-7613(1988)016<0149:MIBBBS>2.3.CO;2
Metallic ion binding by Bacillus subtilis; implications for the fossilization of microorganisms
F. G. Ferris (1988)
10.1346/CCMN.1983.0310405
Effect of pH on the Formation of Goethite and Hematite from Ferrihydrite
U. Schwertmann (1983)
10.1128/AEM.41.1.274-287.1981
Scanning electron microscope evidence for bacterial colonization of a drinking-water distribution system.
H. Ridgway (1981)
10.1007/978-1-4615-3810-3_17
Biomineralization of Iron Sulfides in Magnetotactic Bacteria from Sulfidic Environments
D. A. Bazylinski (1991)
10.1038/332119A0
Molecular recognition in biomineralization
S. Mann (1988)
10.1130/0091-7613(1993)021<1103:MSAMPB>2.3.CO;2
Metal sorption and mineral precipitation by bacteria in two Amazonian river systems: Rio Solimões and Rio Negro, Brazil
K. Konhauser (1993)
10.1128/JB.175.7.1936-1945.1993
Mechanism of silicate binding to the bacterial cell wall in Bacillus subtilis.
M. Mera (1993)
10.1144/gsjgs.149.4.0581
A reinterpretation of the genesis of the Cae Coch pyrite deposit, North Wales
S. Bottrell (1992)
10.1126/SCIENCE.238.4832.1342
Postmortem on Three Mile Island: After 8 years and $1 billion, the cleanup is coming to an end. A mass of data has been produced but one nagging question remains: Why wasn't there core on the floor?
W. Booth (1987)
Environmental chemistry of the elements
H. J. Bowen (1979)
10.1016/0016-7061(94)00037-B
Formation of short-range ordered aluminosilicates in the presence of a bacterial surface (Bacillus subtilis) and organic ligands
M. Urrutia (1995)
10.1002/(SICI)1097-0290(19970520)54:4<319::AID-BIT4>3.0.CO;2-N
Microbially enhanced chemisorption of nickel into biologically synthesized hydrogen uranyl phosphate: a novel system for the removal and recovery of metals from aqueous solutions.
G. Bašnáková (1997)
10.1128/AEM.45.3.1094-1108.1983
Diagenesis of metals chemically complexed to bacteria: laboratory formation of metal phosphates, sulfides, and organic condensates in artificial sediments.
T. Beveridge (1983)
10.1080/01490459209377910
Rock weathering in deserts: Mobilization and concentration of ferric iron by microorganisms
J. Adams (1992)
10.1126/science.260.5108.640
Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life
J. Schopf (1993)
10.1128/AEM.41.2.528-538.1981
Morphological survey of microbial mats near deep-sea thermal vents.
H. Jannasch (1981)
10.1139/M78-018
The response of cell walls of Bacillus subtilis to metals and to electron-microscopic stains.
T. Beveridge (1978)
Metal-microbe interactions
R. K. Poole (1989)
10.1139/M69-007
The thermodynamics of iron oxidation by the ferrobacilli.
H. Lees (1969)
10.2136/SSSAJ1979.03615995004300050018X
The Microbiological Formation of Basic Ferric Sulfates: II. Crystallization in Presence of Potassium-, Ammonium-, and Sodium-Salts 1
K. C. Ivarson (1979)
10.1007/978-94-011-2783-7_66
Iron:phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes
H. Jensen (1992)
METAL IMMOBILISATION BY MICROBIAL CAPSULAR COATINGS
J. A. Scott (1998)
10.1128/AEM.55.12.3143-3149.1989
Bacterial sorption of heavy metals.
M. Mullen (1989)
10.2113/GSECONGEO.80.2.270
Millimeter-scale variations of stable isotope abundances in carbonates from banded iron-formations in the Hamersley Group of Western Australia.
M. Baur (1985)
10.1029/JB092IB11P11303
Faunal composition and organic surface encrustations at hydrothermal vents on the southern Juan De Fuca Ridge
V. Tunnicliffe (1987)



This paper is referenced by
10.1246/BCSJ.20130058
A Microbial-Mineralization-Inspired Approach for Systematic Syntheses of Copper Oxides with Controlled Morphologies in an Aqueous Solution at Room Temperature
Yuya Oaki (2013)
10.1128/AEM.03277-13
Potential Role of Nitrite for Abiotic Fe(II) Oxidation and Cell Encrustation during Nitrate Reduction by Denitrifying Bacteria
N. Klueglein (2013)
10.1016/J.SEDGEO.2010.12.012
Bioconstructions in ochreous speleothems from lava tubes on Terceira Island (Azores)
A. Ríos (2011)
10.1007/978-981-10-8069-2_7
Biogenic and Bio-inspired Syntheses of Hierarchically Structured Iron Compounds for Lithium-Ion Batteries
H. Imai (2018)
10.17738/AJES.2017.0001
Microbial activity records in Marinoan Snowball Earth postglacial transition layers connecting diamictite with cap carbonate (Otavi Group, NW-Namibia)
I. Gyollai (2017)
10.1016/J.GCA.2011.02.024
Products of abiotic U(VI) reduction by biogenic magnetite and vivianite
Harish Veeramani (2011)
10.1111/MAPS.12004
The effects of meteorite impacts on the availability of bioessential elements for endolithic organisms
A. Pontefract (2012)
10.1016/J.GCA.2011.02.030
The effects of non-metabolizing bacterial cells on the precipitation of U, Pb and Ca phosphates
Sarrah M. Dunham-Cheatham (2011)
10.1111/1462-2920.12109
In situ analysis of oxygen consumption and diffusive transport in high-temperature acidic iron-oxide microbial mats.
H. Bernstein (2013)
10.1016/J.CHEMGEO.2014.03.017
The effect of iron-oxidising bacteria on the stability of gold (I) thiosulphate complex
J. Shuster (2014)
10.1007/s13146-020-00630-4
Ferruginous microbialite blooms of the Miaolingian (Cambrian) in the southern North China Craton: a response to the volcanic event?
Xiyang Zhang (2020)
Computational studies of magnetite Fe₃O₄ and related spinel-structured materials
D. S. Carballal (2015)
How does mineralogy control the technical properties of paper kaolins and ceramic clays
Kerstin Petrick (2011)
Mineralogical, petrological, and geochemical studies of Neoproterozoic Sturtian (750 Ma) and Marinoan (635 Ma) postglacial transition layers in Otavi Group, NW-Namibia
I. Gyollai (2014)
10.1002/9780470986325.CH12
Biominerals. Recorders of the Past
D. Fortin (2010)
10.1029/2009JG001139
Microscopy study of biologically mediated alteration of natural mid‐oceanic ridge basalts and magnetic implications
J. Carlut (2010)
10.1080/01490450290098405
Bacterial and Chemical Iron Oxide Deposition in a Shallow Bay on Palaea Kameni, Santorini, Greece: Microscopy, Electron Probe Microanalysis, and Photometry of in situ Experiments
H. H. Hanert (2002)
10.1016/J.GCA.2009.04.013
Precipitation of amorphous CaCO3 (aragonite-like) by cyanobacteria: A STXM study of the influence of EPS on the nucleation process
Martin Obst (2009)
10.1002/chem.201204333
A microbial-mineralization approach for syntheses of iron oxides with a high specific surface area.
Naoki Yagita (2013)
10.1016/J.CHEMGEO.2010.09.012
Fe–Si-oxyhydroxide deposits at a slow-spreading centre with thickened oceanic crust: The Lilliput hydrothermal field (9°33′S, Mid-Atlantic Ridge)
V. M. Dekov (2010)
10.1016/J.SEDGEO.2010.06.003
Intracellular and extracellular mineralization of a microbial community in the Edmond deep-sea vent field environment
X. Peng (2010)
10.1007/978-94-017-0193-8_15
The Study of a Recent Iron-Encrusted Biofilm in the Marine Environment
D. Gillan (2003)
10.15406/JSRT.2017.02.00081
Role of calcium bio-minerals in regenerative medicine and tissue engineering
R. K. Upadhyay (2017)
Saltwater Intrusion and Trace Element Contaminations at the Coastal Aquifers of the Ganges Delta
N. Ahmed. (2016)
Isolierung und kultivierungsunabhängige Untersuchungen von magnetotaktischen Bakterien aus marinen und limnischen Sedimenten
Christine Flies (2004)
10.1007/s10347-013-0381-1
Frutexites encrustations on rugose corals (Middle Devonian, southern Morocco): complex growth of microbial microstromatolites
M. Jakubowicz (2013)
10.1007/10_2019_94
Alkaliphiles: The Emerging Biological Tools Enhancing Concrete Durability.
G. Mamo (2019)
10.1002/JGRG.20119
Formation of biogenic sheath‐like Fe oxyhydroxides in a near‐neutral pH hot spring: Implications for the origin of microfossils in high‐temperature, Fe‐rich environments
X. Peng (2013)
10.1134/S1064229310050054
The role of iron in the fixation of heavy metals and metalloids in soils: a review of publications
Yu. N. Vodyanitskii (2010)
10.1080/01490451.2016.1189467
Comparison of Preparation Methods of Bacterial Cell-Mineral Aggregates for SEM Imaging and Analysis Using the Model System of Acidovorax sp. BoFeN1
F. Zeitvogel (2017)
10.1111/gbi.12073
Characterization of biogenic iron oxides collected by the newly designed liquid culture method using diffusion chambers.
S. Kikuchi (2014)
10.1080/01490451.2014.935534
Structural and Chemical Characterization of Placer Gold Grains: Implications for Bacterial Contributions to Grain Formation
J. Shuster (2015)
See more
Semantic Scholar Logo Some data provided by SemanticScholar