Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

Thin Film Atomic Layer Deposition Equipment For Semiconductor Processing

O. Sneh, R. Clark-Phelps, A. Londergan, J. Winkler, T. Seidel
Published 2002 · Materials Science

Save to my Library
Download PDF
Analyze on Scholarcy
Share
Abstract Atomic layer deposition (ALD) of ultrathin high-K dielectric films has recently penetrated research and development lines of several major memory and logic manufacturers due to the promise of unprecedented control of thickness, uniformity, quality and material properties. LYNX-ALD technology from Genus, currently at beta phase, was designed around the anticipation that future ultrathin materials are likely to be binary, ternary or quaternary alloys or nanolaminate composites. A unique chemical delivery system enables synergy between traditional, production-proven low pressure chemical vapor deposition (LPCVD) technology and atomic layer deposition (ALD) controlled by sequential surface reactions. Source chemicals from gas, liquid or solid precursors are delivered to impinge on reactive surfaces where self-limiting surface reactions yield film growth with layer-by-layer control. Surfaces are made reactive by the self-limiting reactions, by surface species manipulation, or both. The substrate is exposed to one reactant at a time to suppress possible chemical vapor deposition (CVD) contribution to the film. Precisely controlled composite materials with multiple-component dielectric and metal–nitride films can be deposited by ALD techniques. The research community has demonstrated these capabilities during the past decade. Accordingly, ALD equipment for semiconductor processing is unanimously in high demand. However, mainstream device manufacturers still criticize ALD to be non-viable for Semiconductor device processing. This article presents a broad set of data proving feasibility of ALD technology for semiconductor device processing.
This paper references
10.1016/0040-6090(94)90168-6
Development of crystallinity and morphology in hafnium dioxide thin films grown by atomic layer epitaxy
M. Ritala (1994)
10.1016/0039-6028(96)00592-4
Adsorption and desorption kinetics of H2O on a fully hydroxylated SiO2 surface
O. Sneh (1996)
10.1063/1.337344
Atomic layer epitaxy
C. H. L. Goodman (1986)
10.1016/0040-6090(93)90173-M
Layered tantalum-aluminum oxide films deposited by atomic layer epitaxy
H. Kattelus (1993)
10.1016/0039-6028(95)00471-8
Atomic layer growth of SiO2 on Si(100) using SiCl4 and H2O in a binary reaction sequence
O. Sneh (1995)
10.1146/annurev.ms.15.080185.001141
Atomic Layer Epitaxy
T. Suntola (1985)
10.1016/0040-6090(93)90557-6
Atomic force microscopy study of titanium dioxide thin films grown by atomic layer epitaxy
M. Ritala (1993)
10.1038/32381
Discovery of a useful thin-film dielectric using a composition-spread approach
R. Dover (1998)
10.1063/1.125779
Structure and stability of ultrathin zirconium oxide layers on Si(001)
M. Copel (2000)
10.1016/S0022-0248(00)00831-9
Texture development in nanocrystalline hafnium dioxide thin films grown by atomic layer deposition
J. Aarik (2000)
10.1016/S0040-6090(98)01356-X
Influence of substrate temperature on atomic layer growth and properties of HfO2 thin films
J. Aarik (1999)
10.1021/JP9536763
Surface Chemistry for Atomic Layer Growth
S. George (1996)
10.1016/S0040-6090(96)08934-1
Al3O3 thin film growth on Si(100) using binary reaction sequence chemistry
A. Ott (1997)
10.1021/JA01269A023
ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS
S. Brunauer (1938)
10.1063/1.372113
High permittivity thin film nanolaminates
H. Zhang (2000)
10.1021/CM00034A004
Selective metalization by chemical vapor deposition
W. Gladfelter (1993)
10.1088/0957-4484/10/1/005
Atomic layer epitaxy—a valuable tool for nanotechnology?
M. Ritala (1999)
Ultrathin SiO2 and High-K Materials for ULSI Gate Dielectrics
H. Huff (1999)
10.1063/1.371576
PROPERTIES OF ATOMIC LAYER DEPOSITED (TA1-XNBX)2O5 SOLID SOLUTION FILMS AND TA2O5-NB2O5 NANOLAMINATES
K. Kukli (1999)
10.1142/S0218625X99000433
ATOMIC LAYER DEPOSITION OF SiO2 USING CATALYZED AND UNCATALYZED SELF-LIMITING SURFACE REACTIONS
J. W. Klaus (1999)
10.1063/1.1362331
Electrical and materials properties of ZrO2 gate dielectrics grown by atomic layer chemical vapor deposition
C. M. Perkins (2001)
10.1149/1.1837399
Properties of Ta2 O 5‐Based Dielectric Nanolaminates Deposited by Atomic Layer Epitaxy
K. Kukli (1997)
10.1149/1.2050083
Atomic Layer Epitaxy Growth of TiN Thin Films
M. Ritala (1995)
10.1021/LA00036A030
Measurement of polymer adsorption on colloidal silica by in situ transmission Fourier transform infrared spectroscopy
C. Tripp (1993)
10.1063/1.115990
Tailoring the dielectric properties of HfO2–Ta2O5 nanolaminates
K. Kukli (1996)
10.1016/B978-012512908-4/50003-5
Handbook of thin film materials
H. Nalwa (2002)
10.1016/S0169-4332(97)00387-5
Effects of intermediate zinc pulses on properties of TiN and NbN films deposited by atomic layer epitaxy
M. Ritala (1997)
10.1147/rd.433.0245
Scaling the gate dielectric: Materials, integration, and reliability
D. Buchanan (1999)
10.1063/1.118898
Titanium oxide/aluminum oxide multilayer reflectors for "water-window" wavelengths
H. Kumagai (1997)
10.1016/S0965-9773(98)00003-8
Properties of (Nb1 − xTax)2O5 solid solutions and (Nb1 − xTax)2O5-ZrO2 nanolaminates grown by Atomic Layer Epitaxy
K. Kukli (1997)
10.1557/JMR.1996.0350
Thermodynamic stability of binary oxides in contact With silicon
K. J. Hubbard (1996)
10.1149/1.1838736
Atomic Layer Epitaxy Growth of TiN Thin Films from Til4 and NH 3
M. Ritala (1998)



This paper is referenced by
10.1116/1.4816584
Tobacco mosaic virus: A biological building block for micro/nano/bio systems
X. Fan (2013)
10.1007/S10854-010-0144-5
ZrO2 thin films on Si substrate
Y. H. Wong (2010)
10.1016/J.ORGEL.2014.03.007
High barrier properties of transparent thin-film encapsulations for top emission organic light-emitting diodes
Yang Yong-qiang (2014)
10.1007/s13204-018-0866-x
Effect of the interfacial (low-k SiO2 vs high-k Al2O3) dielectrics on the electrical performance of a-ITZO TFT
Taki Eddine Taouririt (2018)
10.1149/1.2217134
Impact of O3 concentration on ultrathin HfO2 films deposited on HF-cleaned silicon using atomic layer deposition with Hf[N(CH3)(C2H5)]4
S. Kamiyama (2006)
10.1149/1.1770934
Properties of HfO2 Thin Films Grown by ALD from Hafnium tetrakis(ethylmethylamide) and Water
K. Kukli (2004)
Optimization of High-films on Si Substrate Fabrication and characterization
(2012)
10.1146/annurev-chembioeng-062011-080958
Chemical processing of materials on silicon: more functionality, smaller features, and larger wafers.
Nathan Marchack (2012)
10.1002/AIC.14553
Atomic layer deposition of polyimide on microporous polyethersulfone membranes for enhanced and tunable performances
T. Sheng (2014)
10.1557/PROC-796-V3.6
Emission of Rare Earth Ions Incorporated into Metal Oxide Thin Films and Fibres
I. Sildos (2003)
10.1109/IRWS.2002.1194243
Reliability concerns for HfO/sub 2//Si devices: interface and dielectric traps
A. Y. Kang (2002)
10.1016/J.APSUSC.2004.02.048
Effects of precursors on nucleation in atomic layer deposition of HfO2
J. Aarik (2004)
10.1364/OE.24.007654
Long period gratings coated with hafnium oxide by plasma-enhanced atomic layer deposition for refractive index measurements.
L. Melo (2016)
10.1002/ente.202000819
Interface Engineering for High Performance Photoelectrochemical Cells via Atomic Layer Deposition Technique
Shiyao Cao (2020)
Développement de transistors à effet de champ à base de nanofils de silicium pour la détection en phase liquide
Ahmet Lale (2017)
10.1186/s11671-015-0731-8
Atomic layer deposition for fabrication of HfO2/Al2O3 thin films with high laser-induced damage thresholds
Yaowei Wei (2015)
10.1117/12.899053
Characterization of 1064nm laser-induced damage on antireflection coatings grown by atomic layer deposition
Zhichao Liu (2011)
10.2172/875621
LDRD Project 52523 final report :Atomic layer deposition of highly conformal tribological coatings.
J. Jungk (2005)
10.1116/1.2338047
Modeling HfO2 atomic layer chemical vapor deposition on blanket wafer, via, and trench structures using HfCl4∕H2O
P. J. Stout (2006)
10.1016/j.mee.2018.07.008
Comparative study of macroporous silicon-based photovoltaic characteristics using indium tin oxide-silicon and pn-silicon junction based devices.
A. Enemuo (2018)
Atomic layer deposition of titanium, zirconium and hafnium dioxides: growth mechanisms and properties of thin films
J. Aarik (2007)
10.1557/OPL.2011.510
Nanostructured Telluride Films on Macroporous Silicon for High Efficiency Thermoelectric Devices
H. Robinson (2011)
Der Frontkontakt der CdTe-Dünnschichtsolarzelle: Charakterisierung und Modifizierung von Puffer- und Fensterschichten und deren Grenzflächen
A. Fuchs (2015)
Mechanics and Gas Transport of Ultrathin Membranes
L. Wang (2014)
10.1116/1.4961885
Plasma enhanced atomic layer deposition of ZnO with diethyl zinc and oxygen plasma: Effect of precursor decomposition
T. Muneshwar (2016)
10.1016/J.JCAT.2013.12.019
A Single-Event MicroKinetic assessment of n-alkane hydroconversion on ultrastable Y zeolites after Atomic Layer Deposition of alumina
Bart D. Vandegehuchte (2014)
10.1002/9783527639915.CH10
Coatings on High Aspect Ratio Structures
J. W. Elam (2012)
10.1016/J.SUSC.2006.11.026
Surface chemistry of HfI4 on Si(100)-(2 x 1) studied by core level photoelectron spectroscopy
A. Sandell (2007)
10.1007/978-3-642-38934-4_6
TEM for Characterization of Core-Shell Nanomaterials
Y. Wang (2014)
10.1149/1.2073125
Impact of Interface Layer Nitrogen Concentration on HfO2 ∕ Hf -Silicate/Poly-Si–Based MOSFET Performance
S. Kamiyama (2005)
10.1088/0957-4484/16/4/005
Fabrication of poly-Si/Au nano-gaps using atomic-layer-deposited Al2O3 as a sacrificial layer
C. Park (2005)
10.1021/jz502542a
Use of Mixed CH3-/HC(O)CH2CH2-Si(111) Functionality to Control Interfacial Chemical and Electronic Properties During the Atomic-Layer Deposition of Ultrathin Oxides on Si(111).
Leslie E. O'Leary (2015)
See more
Semantic Scholar Logo Some data provided by SemanticScholar