Online citations, reference lists, and bibliographies.
← Back to Search

Continuous Synthesis Of Amorphous Carbonated Apatites.

D. Tadić, F. Peters, M. Epple
Published 2002 · Materials Science, Medicine

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
Amorphous carbonated hydroxyapatite was prepared by rapid mixing of aqueous solutions of a continuous computer-controlled reactor. The variation of the carbonate content in the solid product is possible by adjustment of the ratios of phosphate to carbonate in the initial solution. The principal reaction parameters (temperature, pH, stirrer speed, solution composition and supersaturation) are controlled and monitored. By controlling these processing parameters, a non-stoichiometric hydroxyapatite with fine-tuned crystallinity, morphology, and carbonate content can be reproducibly prepared. The higher solubility under the conditions of osteoclastic resorption was tested in vitro at constant pH (4.4).
This paper references
10.1038/206403a0
Effect of Carbonate on the Lattice Parameters of Apatite
Racquel ZAPANTA-LEGEROS (1965)
10.1126/science.200.4345.1059
Mineralization Kinetics: A Constant Composition Approach
M. Tomson (1978)
10.1021/JA00525A015
Crystallization of calcium phosphates. A constant composition study
P. Koutsoukos (1980)
10.1016/0014-4827(88)90191-7
Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts.
I. Silver (1988)
10.1016/0022-0248(89)90576-9
Rapid precipitation of apatite from ethanol-water solution
E. Lerner (1989)
Calcium phosphates in oral biology and medicine.
R. Legeros (1991)
10.1002/JBM.820270304
Organoapatites: materials for artificial bone. III. Biological testing.
S. Stupp (1993)
Hydroxyapatite and Related Materials
P. W. Brown (1994)
10.1002/JBM.820280114
Osteoclastic resorption of calcium phosphates is potentiated in postosteogenic culture conditions.
J. D. de Bruijn (1994)
10.1126/SCIENCE.7892603
Skeletal repair by in situ formation of the mineral phase of bone.
B. Constantz (1995)
10.1016/S0142-9612(97)00036-7
Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/beta-tricalcium phosphate ratios.
S. Yamada (1997)
10.1002/jlb.61.4.381
Osteoclasts, macrophages, and the molecular mechanisms of bone resorption
S. Teitelbaum (1997)
10.1002/(SICI)1097-4636(199807)41:1<79::AID-JBM10>3.0.CO;2-C
Carbonate substitution in precipitated hydroxyapatite: an investigation into the effects of reaction temperature and bicarbonate ion concentration.
J. Barralet (1998)
10.1007/PL00003483
Biological reactions to calciumphosphate ceramic implants.
J. Rueger (1998)
10.1007/PL00003481
Bone replacement materials – state of the art and the way ahead
J. Rueger (1998)
10.1002/(SICI)1097-4636(19980315)39:4<603::AID-JBM15>3.0.CO;2-7
Sintered carbonate apatites as bioresorbable bone substitutes.
Y. Doi (1998)
10.1002/(SICI)1097-4636(19981215)42:4<540::AID-JBM9>3.0.CO;2-2
Tissue response to nano-hydroxyapatite/collagen composite implants in marrow cavity.
C. Du (1998)
10.1146/ANNUREV.MATSCI.28.1.271
THE MATERIAL BONE: Structure-Mechanical Function Relations
S. Weiner (1998)
10.1023/A:1008975507498
Synthesis and characterization of carbonate hydroxyapatite
J. Merry (1998)
10.1007/S001320050206
[Biologic reactions to calcium phosphate ceramic implantations. Results of animal experiments].
J. Rueger (1998)
10.1002/(SICI)1097-4636(199901)44:1<78::AID-JBM9>3.0.CO;2-6
Degradation of calcium phosphate ceramics.
H. Koerten (1999)
10.1002/(SICI)1097-4636(19990615)45:4<311::AID-JBM5>3.0.CO;2-9
The influence of hydroxyapatite particles on osteoclast cell activities.
J. Sun (1999)
10.1002/(SICI)1097-4636(199905)45:2<140::AID-JBM9>3.0.CO;2-I
Osteoclast adhesion and activity on synthetic hydroxyapatite, carbonated hydroxyapatite, and natural calcium carbonate: relationship to surface energies.
S. Redey (1999)
10.1006/JCIS.1999.6407
Observations on the Apparent Solubility of Carbonate-Apatites.
Shellis (1999)
10.1016/S0142-9612(98)00244-0
Synthesis of functionally graded CO3 apatite as surface biodegradable crystals.
M. Okazaki (1999)
10.1021/CM001033G
Controlled Crystallization of Calcium Phosphate Apatites
L. M. Rodríguez-Lorenzo (2000)
10.1016/S0162-0134(00)00115-X
Carbonated hydroxyapatites precipitated in the presence of Ti.
J. D. Layani (2000)
10.1016/S0040-6031(00)00554-2
The structure of bone studied with synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal analysis
F. Peters (2000)
10.1016/S0142-9612(00)00218-0
Fabrication of hydroxyapatite bodies by uniaxial pressing from a precipitated powder.
L. M. Rodríguez-Lorenzo (2001)
10.1002/1097-4636(200102)54:2<162::AID-JBM2>3.0.CO;2-3
Biologically and chemically optimized composites of carbonated apatite and polyglycolide as bone substitution materials.
W. Linhart (2001)



This paper is referenced by
10.1016/B978-0-12-818831-6.00011-2
Calcium-based ceramic biomaterials
N. Ramesh (2021)
10.1016/J.MTLA.2021.101107
Structure and formation of amorphous calcium phosphate and its role as surface layer of nanocrystalline apatite: Implications for bone mineralization
M. Edén (2021)
10.3390/ma14133516
Biomimetic Calcium Phosphate Coatings for Bioactivation of Titanium Implant Surfaces: Methodological Approach and In Vitro Evaluation of Biocompatibility
T. Kreller (2021)
10.1016/j.matchar.2020.110739
TOFSIMS and XPS characterisation of strontium in amorphous calcium phosphate sputter deposited coatings
J. Acheson (2021)
10.1021/ACS.JPCC.0C10355
Structural Role and Spatial Distribution of Carbonate Ions in Amorphous Calcium Phosphate
Ozlen F. Yasar (2021)
Ex Vivo Evaluation of a Restoration Protocol for Teeth with Simulated Incomplete Rhizogenesis Evaluación ex vivo de un protocolo de restauración para dientes con rizogénesis incompleta simulada
Cristina Retana-Lobo (2020)
10.1155/2020/9576930
Bioactivity and Physicochemical Properties of Three Calcium Silicate-Based Cements: An In Vitro Study
R. M. Talabani (2020)
10.1007/978-3-030-45489-0
Composite Materials: Applications in Engineering, Biomedicine and Food Science
S. Siddiquee (2020)
10.1007/978-3-030-45489-0_14
Hybrid Composite for Orthopedic Applications
Y. B. Ismail (2020)
10.1016/j.ceramint.2020.07.153
Effect of sintering temperature on the morphology, crystallinity and mechanical properties of carbonated hydroxyapatite (CHA)
M. Safarzadeh (2020)
10.4028/www.scientific.net/KEM.846.175
Alkali-Heat Treatment of Ti-6Al-4V to Hydroxyapatite Coating Using Electrophoretic Method
S. Supriadi (2020)
10.1088/1748-605x/ab6b30
Novel calcium phosphate coated calcium silicate-based cement: in vitro evaluation.
S. Ghaffari (2020)
Retrospektive Untersuchung der digital bestimmten relativen Knochendichte nach Defektauffüllungen im Mund- Kiefer-Gesichtsbereich mittels phasenreinen Hydroxyl-apatits unter Berücksichtigung der klinischen Verläufe
M. Geiger (2020)
10.3389/fbioe.2020.00119
The Injectable Woven Bone-Like Hydrogel to Perform Alveolar Ridge Preservation With Adapted Remodeling Performance After Tooth Extraction
Tao Yang (2020)
10.1007/s41779-019-00317-7
Effects of calcination on synthesis of hydroxyapatite derived from oyster shell powders
Shih-Ching Wu (2019)
10.1016/j.jsb.2019.04.014
How does osteocalcin lacking γ-glutamic groups affect biomimetic apatite formation and what can we say about its structure in mineral-bound form?
Taly Iline-Vul (2019)
10.1134/S0020168519130028
Chemical Transformations of Calcium Phosphates during Production of Ceramic Materials on Their Basis
V. I. Putlyaev (2019)
10.3390/jfb11010001
Physicochemical, Mechanical, and Antimicrobial Properties of Novel Dental Polymers Containing Quaternary Ammonium and Trimethoxysilyl Functionalities
D. R. Bienek (2019)
10.1016/j.matpr.2019.11.124
Effect of Aging Time in the Synthesis of Biogenic Hydroxyapatite Derived from Cockle Shell
S. H. Saharudin (2019)
10.1007/978-981-13-0989-2_8
Thermal Analysis of Glass-Ceramics and Composites in Biomedical and Dental Sciences
G. Theodorou (2019)
10.3390/nano10010020
Highly Porous Amorphous Calcium Phosphate for Drug Delivery and Bio-Medical Applications
Rui Sun (2019)
10.1039/c8nr00372f
Atomically resolved calcium phosphate coating on a gold substrate.
N. Metoki (2018)
Céramiques phosphocalciques fonctionnalisées : étude des propriétés de surface par méthodes spectroscopiques
Nadia El Felss (2018)
10.1111/aej.12227
Effect of blood contamination on the compressive strength of three calcium silicate‐based cements
M. S. Sheykhrezae (2018)
10.2485/JHTB.27.147
Bone Response to Nano-apatite Paste Derived from Ca-amino Acid Complex
Takuya Waki (2018)
Enhanced Osseointegration of Endoprostheses Using Selective Laser Sintered Porous Titanium Alloy Combined With Solution Deposited Coatings
As Mumith (2018)
10.1016/J.ELECTACTA.2018.07.019
Simultaneous detection of Pb2+, Cu2+ and Hg2+ by differential pulse voltammetry at an indium tin oxide glass electrode modified by hydroxyapatite
M. Sun (2018)
10.1007/s12034-018-1680-5
Recovering value from waste: biomaterials production from marine shell waste
S. H. Saharudin (2018)
10.1016/j.actbio.2017.06.040
Amorphous surface layer versus transient amorphous precursor phase in bone - A case study investigated by solid-state NMR spectroscopy.
S. Von Euw (2017)
Tuning the biological performance of calcium phosphates through microstructural and chemical modifications
A. Escudero (2017)
10.1088/1748-605X/aa69c3
Osteoblast and osteoclast responses to A/B type carbonate-substituted hydroxyapatite ceramics for bone regeneration.
Marie-Michèle Germaini (2017)
10.1016/J.JEURCERAMSOC.2017.11.051
Consolidation of bone-like apatite bioceramics by spark plasma sintering of amorphous carbonated calcium phosphate at very low temperature
C. Ortali (2017)
See more
Semantic Scholar Logo Some data provided by SemanticScholar