Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

Bacterial Metal-resistance Proteins And Their Use In Biosensors For The Detection Of Bioavailable Heavy Metals.

I. Bontidean, J. Lloyd, J. Hobman, J. R. Wilson, E. Csöregi, B. Mattiasson, N. Brown
Published 2000 · Chemistry, Medicine

Save to my Library
Download PDF
Analyze on Scholarcy
Share
We have expressed and purified metal-resistance and metal regulatory proteins from the bacterial determinants of resistance to heavy metals and utilised these in the development of biosensors for heavy metals. Both the metallothionein from the cyanobacterium Synechococcus PCC 7942 and the MerR regulatory protein from transposon Tn501 allow the detection of non-specific metal binding down to 10(-15) M concentrations of Hg(II), Cu(II), Zn(II) and Cd(II) in pure solution. Differential effects of the metals can be detected at both low and high concentrations, and the shape of the capacitance curves may reflect biologically relevant responses of the proteins to metals. Further work is required to establish the relationship between the detected binding of metal and the biological response of the protein, or to provide biosensors of use in the natural environment.
This paper references
10.1073/PNAS.87.10.3846
Ultrasensitivity and heavy-metal selectivity of the allosterically modulated MerR transcription complex.
D. M. Ralston (1990)
10.1007/978-3-642-72071-0_9
Metal Regulation of Gene Expression in Bacterial Systems
N. Brown (1998)
10.1111/J.1574-6968.1993.TB06325.X
luxAB gene fusions with the arsenic and cadmium resistance operons of Staphylococcus aureus plasmid pI258.
P. Corbisier (1993)
10.1016/S0378-1119(96)00326-5
Biodegradation of 2,4,5-trichlorophenoxyacetic acid by Burkholderia cepacia strain AC1100: evolutionary insight.
D. Daubaras (1996)
10.1099/00221287-144-10-2855
Selection and characterization of mercury-independent activation mutants of the Tn501 transcriptional regulator, MerR.
J. Parkhill (1998)
10.1007/978-1-4615-5993-1
Metal Ions in Gene Regulation
S. Silver (1998)
10.1099/00221287-132-2-465
Transcriptional regulation of the mercury-resistance genes of transposon Tn501.
P. Lund (1986)
10.1074/jbc.273.36.22957
Coordination of Zn2+ (and Cd2+) by Prokaryotic Metallothionein
M. J. Daniels (1998)
10.1016/S0378-1119(96)00323-X
Bacterial resistances to toxic metal ions--a review.
S. Silver (1996)
Mercury-responsive gene regulation and mercury-199 as a probe of protein structure.
D. Huffman (1997)
10.1021/AC970203E
Capacitance measurements of antibody-antigen interactions in a flow system.
C. Berggren (1997)
10.1002/j.1460-2075.1993.tb05673.x
Construction and characterization of a mercury‐independent MerR activator (MerRAC): transcriptional activation in the absence of Hg(II) is accompanied by DNA distortion.
J. Parkhill (1993)
10.1016/0147-619X(92)90001-Q
Plasmid-determined metal resistance mechanisms: range and overview.
S. Silver (1992)
10.1016/0167-7799(91)90007-5
Towards an understanding of the genetics of bacterial metal resistance.
M. Mergeay (1991)
10.1046/j.1365-2958.1999.01229.x
ZntR is a Zn(II)‐responsive MerR‐like transcriptional regulator of zntA in Escherichia coli
K. R. Brocklehurst (1999)
10.1146/ANNUREV.MICRO.50.1.753
Bacterial heavy metal resistance: new surprises.
S. Silver (1996)
10.1016/S0003-2670(98)00725-9
Whole cell- and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples
P. Corbisier (1999)
10.1021/AC9803636
Detection of heavy metal ions at femtomolar levels using protein-based biosensors.
I. Bontidean (1998)
10.1016/0014-5793(92)80509-F
Cyanobacterial metallothionein gene expressed inEscherichia coli Metal‐binding properties of the expressed protein
J. Shi (1992)
10.1126/SCIENCE.2305262
The MerR metalloregulatory protein binds mercuric ion as a tricoordinate, metal-bridged dimer.
J. Helmann (1990)



This paper is referenced by
10.1002/1521-3773(20010716)40:14<2676::AID-ANIE2676>3.0.CO;2-5
Highly Sensitive Novel Biosensor Based on an Immobilized lac Repressor.
I. Bontidean (2001)
10.1002/bab.1805
MerR‐fluorescent protein chimera biosensor for fast and sensitive detection of Hg2+ in drinking water
C. Özyurt (2019)
10.1135/CCCC20001205
Bioremediation of Heavy Metal Pollution Exploiting Constituents, Metabolites and Metabolic Pathways of Livings. A Review
P. Kotrba (2000)
10.1128/9781555817596.CH8
Bioremediation of Metals and Radionuclides
J. R. Lloyd (2005)
10.1201/9780203909300.ch19
Bacterial metal-responsive elements and their use in biosensors for monitoring of heavy metals
I. Bontidean (2002)
Développement d'un biocapteur bactérien pour la détection de métaux lourds
Karl Bernhard Riether (2001)
Surface Plasmon Resonance (SPR) Bio-Sensors to Detect Target Molecules in Undiluted Human Serum
Ran Wang (2015)
10.1016/j.bios.2010.07.118
Love-wave bacteria-based sensor for the detection of heavy metal toxicity in liquid medium.
I. Gammoudi (2010)
10.1016/J.TIM.2006.02.006
Co-selection of antibiotic and metal resistance.
C. Baker-Austin (2006)
10.1039/B604690H
Application of N-PLS calibration to the simultaneous determination of Cu(2+), Cd(2+) and Pb(2+) using peptide modified electrochemical sensors.
E. Chow (2006)
Application of bacterial biomass as a potential metal indicator
S. Srivastava (2005)
10.1007/978-3-030-45116-5_4
Biosensors Used for Monitoring of Environmental Contaminants
Naveen Patel (2020)
10.1002/ELAN.200603558
Peptide Modified Electrodes as Electrochemical Metal Ion Sensors
E. Chow (2006)
10.1007/978-94-007-1914-9
Biomanagement of metal-contaminated soils
M. S. Khan (2011)
10.1021/acsomega.7b01404
Oxytocin-Monolayer-Based Impedimetric Biosensor for Zinc and Copper Ions
Kiran Kumar Tadi (2017)
Application and Construction of Microbial Biosensors in Chemical Forensics
J. Couper (2008)
RAZVOJ BIOLOŠKEGA SENZORSKEGA SISTEMA ZA ZAZNAVANJE IVEGA SREBRA V VODI
D. Delo (2006)
No v el synthetic phytochelatin-based capaciti v e biosensor for hea v y metal ion detection
I. Bontidean (2003)
Design and Development of Biosensors for the Detection of HeavyMetal Toxicity
G. Turdean (2014)
10.1016/J.BIOS.2005.07.007
Bacterial sensors based on Acidithiobacillus ferrooxidans Part I. Fe2+ and S2O32- determination.
R. Zlatev (2006)
10.1007/978-0-387-72947-3_6
Metal Ion Binding to Ferrocene Peptide Dendrimer Films
Francis E. Appoh (2008)
Interactions between metals, microbes and plants : Bioremediation of arsenic and lead contaminated soils
R. Turpeinen (2002)
METALLOTHIONEIN INDUCTION IN TWO SPECIES OF PSEUDOMONAS EXPOSED TO CADMIUM AND COPPER CONTAMINATION
M. Enshaei (2010)
10.1016/S0958-1669(00)00207-X
Microbial detoxification of metals and radionuclides.
J. Lloyd (2001)
10.1063/1.2089166
Morphology evolution and local electric properties of Au nanoparticles on ZnO thin films
E. Gyorgy (2005)
10.1016/J.APSUSC.2005.07.148
Au cluster growth on ZnO thin films by pulsed laser deposition
E. Gyorgy (2006)
10.1128/JB.186.6.1861-1868.2004
Engineered single-chain, antiparallel, coiled coil mimics the MerR metal binding site.
Lingyun Song (2004)
10.3390/S5010004
Overview of Sensors and Needs for Environmental Monitoring
C. K. Ho (2005)
10.1016/J.SNB.2005.03.046
Analytical performance and characterization of MPA-Gly-Gly-His modified sensors
E. Chow (2005)
10.1016/S0956-5663(03)00026-5
Novel synthetic phytochelatin-based capacitive biosensor for heavy metal ion detection.
I. Bontidean (2003)
10.1016/j.jinorgbio.2013.05.019
Competition of zinc(II) with cadmium(II) or mercury(II) in binding to a 12-mer peptide.
A. Jancsó (2013)
10.1016/S0162-0134(01)00374-9
Recent developments in quantification methods for metallothionein.
M. Dabrio (2002)
See more
Semantic Scholar Logo Some data provided by SemanticScholar