Online citations, reference lists, and bibliographies.
← Back to Search

Assessment Of Using Laponite Cross-linked Poly(ethylene Oxide) For Controlled Cell Adhesion And Mineralization.

A. Gaharwar, Patrick J. Schexnailder, Benjamin P. Kline, G. Schmidt
Published 2011 · Materials Science, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
The in vitro cytocompatibility of silicate (Laponite clay) cross-linked poly(ethylene oxide) (PEO) nanocomposite films using MC3T3-E1 mouse preosteoblast cells was investigated while cell adhesion, spreading, proliferation and mineralization were assessed as a function of film composition. By combining the advantageous characteristics of PEO polymer (hydrophilic, prevents protein and cell adhesion) with those of a synthetic and layered silicate (charged, degradable and potentially bioactive) some of the physical and chemical properties of the resulting polymer nanocomposites could be controlled. Hydration, dissolution and mechanical properties were examined and related to cell adhesion. Overall, this feasibility study demonstrates the ability of using model Laponite cross-linked PEO nanocomposites to create bioactive scaffolds.
This paper references
10.1016/S1369-7021(04)00506-1
Framework for nanocomposites
R. Vaia (2004)
Osteoblast adhesion on
G Rawadi (2000)
10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9
Nanocomposite Hydrogels: A Unique Organic–Inorganic Network Structure with Extraordinary Mechanical, Optical, and Swelling/De‐swelling Properties
K. Haraguchi (2002)
10.1201/B13964-18
On Polymer Nanocomposites
A. Olkhov (2013)
10.1038/nmat2344
Physical approaches to biomaterial design.
S. Mitragotri (2009)
10.1359/jbmr.1999.14.6.893
Isolation and Characterization of MC3T3‐E1 Preosteoblast Subclones with Distinct In Vitro and In Vivo Differentiation/Mineralization Potential
D. Wang (1999)
10.1038/nbt0695-565
Biomaterials in Tissue Engineering
J. Hubbell (1995)
10.1016/j.biomaterials.2008.09.015
The effect of organo clay and adsorbed FeO(3) nanoparticles on cells cultured on Ethylene Vinyl Acetate substrates and fibers.
Hilana M. Lewkowitz-Shpuntoff (2009)
10.1002/ADMA.19960080104
Polymer Layered Silicate Nanocomposites
E. Giannelis (1996)
10.1016/S1534-5807(04)00075-9
Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment.
R. McBeath (2004)
10.1038/NMAT906
Nanostructured artificial nacre
Zhiyong Tang (2003)
10.1021/BM060549B
Control of cell cultivation and cell sheet detachment on the surface of polymer/clay nanocomposite hydrogels.
K. Haraguchi (2006)
10.1038/nnano.2007.401
Nanocomposites: paving the way to stronger materials.
H. D. Wagner (2007)
10.1016/J.ADDR.2007.03.020
Matrices and scaffolds for protein delivery in tissue engineering.
Joerg K V Tessmar (2007)
10.1002/MAME.200600260
Twenty Years of Polymer‐Clay Nanocomposites
A. Okada (2006)
10.1016/0021-9797(92)90254-J
The nature of laponite and its aqueous dispersions
D. Thompson (1992)
10.1002/(SICI)1097-4644(19960616)61:4<609::AID-JCB15>3.0.CO;2-A
Expression patterns of bone‐related proteins during osteoblastic differentiation in MC3T3‐E1 cells
J. Choi (1996)
RGD modified polymers :
U Hersel
10.1016/J.BIOMATERIALS.2006.07.027
Proliferation and osteoblastic differentiation of human bone marrow-derived stromal cells on akermanite-bioactive ceramics.
H. Sun (2006)
10.1002/POLB.20317
Rheology and gelation kinetics in laponite dispersions containing poly(ethylene oxide)
Hossein A. Baghdadi (2005)
10.1002/mabi.200900080
Silicate cross-linked bio-nanocomposite hydrogels from PEO and chitosan.
Q. Jin (2009)
10.1359/jbmr.2003.18.10.1842
BMP‐2 Controls Alkaline Phosphatase Expression and Osteoblast Mineralization by a Wnt Autocrine Loop
G. Rawadi (2003)
10.1016/S0142-9612(03)00343-0
RGD modified polymers: biomaterials for stimulated cell adhesion and beyond.
U. Hersel (2003)
10.1126/SCIENCE.1143176
Ultrastrong and Stiff Layered Polymer Nanocomposites
P. Podsiadlo (2007)
10.3390/ma3052986
Development of Biomedical Polymer-Silicate Nanocomposites: A Materials Science Perspective
C. Wu (2010)
10.1007/S10856-006-0093-Y
In vitro biodegradation and biocompatibility of gelatin/montmorillonite-chitosan intercalated nanocomposite
H. Zhuang (2007)
10.1016/S0142-9612(00)00288-X
Silica-based bioactive glasses modulate expression of bone morphogenetic protein-2 mRNA in Saos-2 osteoblasts in vitro.
T. Gao (2001)
10.1002/JBM.10270
Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants.
H. Zreiqat (2002)
10.1016/J.COLSURFA.2004.04.040
Reversible shear gelation of polymer–clay dispersions
D. Pozzo (2004)
Polymer nanocomposites. MRS Bull 2007;32:314–22
KI Winey (2007)
10.1002/ADFM.200901606
Highly Extensible Bio-Nanocomposite Films with Direction-Dependent Properties
A. Gaharwar (2010)
10.1002/mabi.201000053
Tuning cell adhesion by incorporation of charged silicate nanoparticles as cross-linkers to polyethylene oxide.
Patrick J. Schexnailder (2010)
10.1038/NMAT1798
High-performance elastomeric nanocomposites via solvent-exchange processing.
Shawna M. Liff (2007)
10.1038/nmat2441
Complexity in biomaterials for tissue engineering.
Elsie S. Place (2009)
10.1016/S0142-9612(01)00097-7
Silicon excretion from bioactive glass implanted in rabbit bone.
W. Lai (2002)
10.1016/S0927-7757(02)00512-5
Shake-gels: shear-induced gelation of laponite-PEO mixtures
J. Zebrowski (2003)
: nanocomposites
DR Paul
10.1007/S00396-008-1949-0
Nanocomposite polymer hydrogels
Patrick J. Schexnailder (2009)
10.1126/science.1148726
Bioinspired Design and Assembly of Platelet Reinforced Polymer Films
L. Bonderer (2008)
10.1111/J.1151-2916.1991.TB07132.X
Bioceramics: From Concept to Clinic
L. Hench (1991)
Poly(Ethylene Glycol) Chemistry Biotechnical and Biomedical Applications
J. M. Harris (1992)
10.1021/MA9918811
Shear Orientation of Viscoelastic Polymer−Clay Solutions Probed by Flow Birefringence and SANS
G. Schmidt (2000)
10.1016/S0142-9612(99)00242-2
Osteoblast adhesion on biomaterials.
K. Anselme (2000)
10.1002/PC.20846
Production of poly(lactic acid)/organoclay nanocomposite scaffolds by microcompounding and polymer/particle leaching
G. Ozkoc (2009)
10.1016/S0169-1317(99)00017-4
Polymer-layered silicate nanocomposites: an overview
Peter C. Lebaron (1999)
10.1021/MA021396X
Influence of added clay particles on the structure and rheology of a hexagonal phase formed by an amphiphilic block copolymer in aqueous solution
V. Castelletto (2003)
10.1016/S0142-9612(99)00162-3
Surface micropatterning to regulate cell functions.
Y. Ito (1999)
10.1021/MA0517547
Dynamic Responses in Nanocomposite Hydrogels
E. Loizou (2006)
10.1021/MA047411A
Large Scale Structures in Nanocomposite Hydrogels
E. Loizou (2005)
10.1016/J.POLYMER.2006.08.051
Structure and thermal properties of multilayered Laponite/PEO nanocomposite films
Eduard A. Stefanescu (2006)
10.1002/1097-4636(200105)55:2<151::AID-JBM1001>3.0.CO;2-D
Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution.
I. D. Xynos (2001)
10.1016/S0962-8924(03)00057-6
Fibroblast biology in three-dimensional collagen matrices.
F. Grinnell (2003)
10.1126/science.177.4049.606
Evidence for Parathyroid Failure in Magnesium Deficiency
C. Anast (1972)
10.1038/424870a
Cell culture: Biology's new dimension
A. Abbott (2003)
10.1016/S0168-3659(01)00248-6
On the importance and mechanisms of burst release in matrix-controlled drug delivery systems.
X. Huang (2001)
In situ generation of sodium alginate/hydroxyapatite nanocomposite beads as drug controlled release matrices
张俊平 (2010)
10.1021/MA9019448
Shear-Induced Nanometer and Micrometer Structural Responses in Nanocomposite Hydrogels
E. Loizou (2010)
10.1073/PNAS.70.5.1608
A bound form of silicon in glycosaminoglycans and polyuronides.
K. Schwarz (1973)
10.1016/S8756-3282(02)00950-X
Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro.
D. Reffitt (2003)
10.1016/j.ceb.2009.08.001
Cytoskeletal control of growth and cell fate switching.
A. Mammoto (2009)
10.1021/LA035268T
A small-angle neutron scattering study of adsorbed poly(ethylene oxide) on Laponite.
A. Nelson (2004)
10.1016/J.POLYMER.2008.04.017
Polymer nanotechnology: Nanocomposites
D. R. Paul (2008)
10.1126/SCIENCE.276.5317.1425
Geometric control of cell life and death.
C. Chen (1997)
10.1039/B517880K
Supramolecular structures in nanocomposite multilayered films.
Eduard A. Stefanescu (2006)



This paper is referenced by
10.24377/LJMU.T.00007684
The development and evaluation of antibacterial polymer-phyllosilicate composite systems for the treatment of infected wounds
A. R. Hamilton (2017)
10.1016/J.CLAY.2013.08.049
Physico-chemical, mechanical and cytotoxicity characterizations of Laponite®/alginate nanocomposite
M. Ghadiri (2013)
10.1016/j.nano.2017.04.016
Laponite®: A key nanoplatform for biomedical applications?
H. Tomás (2018)
EFFECT OF SILICA MICRO/NANO PARTICLES INCORPORATION OVER BIOINSPIRED POLY (ETHYLENE GLYCOL)-BASED ADHESIVE HYDROGEL
Rattapol Pinnaratip (2017)
10.1039/c8bm00293b
Injectable shear-thinning hydrogels for delivering osteogenic and angiogenic cells and growth factors.
Emine Alarçin (2018)
10.1016/j.biomaterials.2017.12.024
Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity.
M. Mousa (2018)
10.1002/adma.201301034
Clay: new opportunities for tissue regeneration and biomaterial design.
J. Dawson (2013)
10.1007/978-1-0716-0611-7_6
Nanocomposite Clay-Based Bioinks for Skeletal Tissue Engineering.
G. Cidonio (2021)
10.1016/j.supflu.2019.104651
Preparation and characterization of cellulose acetate-Laponite® composite membranes produced by supercritical phase inversion
A. Tabernero (2020)
10.4155/tde-2017-0120
Mesoporous inorganic nanoscale particles for drug adsorption and controlled release.
G. Cavallaro (2018)
10.1016/j.colsurfb.2012.10.068
The systems containing clays and clay minerals from modified drug release: a review.
Luís Alberto de Sousa Rodrigues (2013)
10.1016/j.actbio.2012.09.014
Biodegradable nanocomposite hydrogel structures with enhanced mechanical properties prepared by photo-crosslinking solutions of poly(trimethylene carbonate)-poly(ethylene glycol)-poly(trimethylene carbonate) macromonomers and nanoclay particles.
S. Sharifi (2012)
10.1021/acs.biomac.6b01483
One-Step Fabrication of Biocompatible Multifaceted Nanocomposite Gels and Nanolayers.
Fuat Topuz (2017)
10.1021/nn503719n
Shear-Thinning Nanocomposite Hydrogels for the Treatment of Hemorrhage
A. Gaharwar (2014)
10.1039/C8TB02952K
Development of biodegradable polyesters based on a hydroxylated coumarin initiator towards fluorescent visible paclitaxel-loaded microspheres.
Yufei Bian (2019)
10.1007/978-3-319-13575-5_2
Advanced Nanomaterials: Promises for Improved Dental Tissue Regeneration
Janet R. Xavier (2015)
10.1039/c6nr02299e
Injectable shear-thinning nanoengineered hydrogels for stem cell delivery.
Ashish Thakur (2016)
10.1021/acsami.7b02398
Functional Nanoclay Suspension for Printing-Then-Solidification of Liquid Materials.
Y. Jin (2017)
10.1021/acsami.6b00891
Enhancing the Gelation and Bioactivity of Injectable Silk Fibroin Hydrogel with Laponite Nanoplatelets.
Dihan Su (2016)
10.1007/978-3-319-20726-1_1
Microscale Technologies for Engineering Complex Tissue Structures
Charles W. Peak (2016)
10.1016/j.jmbbm.2017.04.026
Mechanical properties of biocompatible clay/P(MEO2MA-co-OEGMA) nanocomposite hydrogels.
H. Xiang (2017)
10.1016/j.biomaterials.2013.01.045
Highly elastomeric poly(glycerol sebacate)-co-poly(ethylene glycol) amphiphilic block copolymers.
A. Patel (2013)
10.1016/j.biomaterials.2014.07.052
The osteogenic differentiation of SSEA-4 sub-population of human adipose derived stem cells using silicate nanoplatelets.
S. Mihaila (2014)
10.1201/B18716-9
Applications of Polymer–Clay Nanocomposites
Ahmet Gurses (2015)
10.1002/adhm.201500272
Nanomaterials for Engineering Stem Cell Responses.
Punyavee Kerativitayanan (2015)
10.1016/j.actbio.2011.07.023
Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles.
A. Gaharwar (2011)
10.1039/C7RA06913H
In vitro and in vivo studies of a gelatin/carboxymethyl chitosan/LAPONITE® composite scaffold for bone tissue engineering
L. Tao (2017)
10.3389/fchem.2020.603577
Poly (Glycerol Sebacate)-Based Bio-Artificial Multiporous Matrix for Bone Regeneration
B. Liang (2020)
10.1016/J.CLAY.2012.11.009
Spectroscopic characterisation and in vitro behaviour of kaolinite polyvinyl alcohol nanocomposite
M. Tămăşan (2013)
Synteza i charakterystyka hydrożelowych nanokompozytów chitozan/laponit dla inżynierii tkanki kostnej
K. Pazdan (2014)
10.1016/J.JCLEPRO.2016.08.120
A comprehensive evaluation of physical and environmental performances for wet-white leather manufacture
Jiabo Shi (2016)
10.1007/978-981-13-8855-2_16
Composites Containing Marine Biomaterials for Bone Tissue Repair
Kalimuthu Balagangadharan (2019)
See more
Semantic Scholar Logo Some data provided by SemanticScholar