Online citations, reference lists, and bibliographies.
← Back to Search

Microbial Nanowires - Electron Transport And The Role Of Synthetic Analogues.

Rhiannon G Creasey, A. Mostert, T. Nguyen, B. Virdis, S. Freguia, B. Laycock
Published 2018 · Chemistry, Medicine

Save to my Library
Download PDF
Analyze on Scholarcy
Share
Electron transfer is central to cellular life, from photosynthesis to respiration. In the case of anaerobic respiration, some microbes have extracellular appendages that can be utilised to transport electrons over great distances. Two model organisms heavily studied in this arena are Shewanella oneidensis and Geobacter sulfurreducens. There is some debate over how, in particular, the Geobacter sulfurreducens nanowires (formed from pilin nanofilaments) are capable of achieving the impressive feats of natural conductivity that they display. In this article, we outline the mechanisms of electron transfer through delocalised electron transport, quantum tunnelling, and hopping as they pertain to biomaterials. These are described along with existing examples of the different types of conductivity observed in natural systems such as DNA and proteins in order to provide context for understanding the complexities involved in studying the electron transport properties of these unique nanowires. We then introduce some synthetic analogues, made using peptides, which may assist in resolving this debate. Microbial nanowires and the synthetic analogues thereof are of particular interest, not just for biogeochemistry, but also for the exciting potential bioelectronic and clinical applications as covered in the final section of the review. STATEMENT OF SIGNIFICANCE Some microbes have extracellular appendages that transport electrons over vast distances in order to respire, such as the dissimilatory metal-reducing bacteria Geobacter sulfurreducens. There is significant debate over how G. sulfurreducens nanowires are capable of achieving the impressive feats of natural conductivity that they display: This mechanism is a fundamental scientific challenge, with important environmental and technological implications. Through outlining the techniques and outcomes of investigations into the mechanisms of such protein-based nanofibrils, we provide a platform for the general study of the electronic properties of biomaterials. The implications are broad-reaching, with fundamental investigations into electron transfer processes in natural and biomimetic materials underway. From these studies, applications in the medical, energy, and IT industries can be developed utilising bioelectronics.
This paper references
10.1016/j.neuron.2011.07.024
Dendritic Spines and Distributed Circuits
R. Yuste (2011)
10.1002/tcr.201600085
Self-Assembly of Bolaamphiphilic Molecules.
Prabhu Dhasaiyan (2017)
10.1103/PHYSREV.79.350
Antiferromagnetism. Theory of Superexchange Interaction
P. Anderson (1950)
10.1126/SCIENCE.1656523
Protein electron transfer rates set by the bridging secondary and tertiary structure.
D. Beratan (1991)
10.1039/C2EE03374G
Non-invasive characterization of electrochemically active microbial biofilms using confocal Raman microscopy
B. Virdis (2012)
10.1038/nature08790
Electric currents couple spatially separated biogeochemical processes in marine sediment
L. Nielsen (2010)
10.1103/PHYSREVE.84.060901
Electronic properties of conductive pili of the metal-reducing bacterium Geobacter sulfurreducens probed by scanning tunneling microscopy.
Joshua P. Veazey (2011)
10.1016/J.NANTOD.2013.05.001
Nanoelectronics-biology frontier: From nanoscopic probes for action potential recording in live cells to three-dimensional cyborg tissues.
Xiaojie Duan (2013)
10.1073/pnas.2133366100
Energetics of hydrogen bonds in peptides
S. Sheu (2003)
10.1557/MRC.2015.44
Engineering semiconducting polymers for efficient charge transport
Scott Himmelberger (2015)
10.1128/AEM.05365-11
Evidence for Direct Electron Transfer by a Gram-Positive Bacterium Isolated from a Microbial Fuel Cell†
K. Wrighton (2011)
10.1002/CELC.201402168
Electron Transport through Early Exponential‐Phase Anode‐Grown Geobacter sulfurreducens Biofilms
Sarah M. Strycharz-Glaven (2014)
10.1126/science.1256358
Beyond blob-ology
Martin T. J. Smith (2014)
10.1073/pnas.1209829109
Long-range electron transport in Geobacter sulfurreducens biofilms is redox gradient-driven
Rachel M. Snider (2012)
10.1096/fj.01-0442hyp
A possible role for π‐stacking in the self‐assembly of amyloid fibrils
E. Gazit (2002)
10.1007/0-387-30746-X_45
Ecophysiology of the Genus Shewanella
K. Nealson (2006)
10.1099/00207713-43-1-135
Thauera selenatis gen. nov., sp. nov., a member of the beta subclass of Proteobacteria with a novel type of anaerobic respiration.
J. Macy (1993)
10.1038/nrmicro.2016.93
Extracellular electron transfer mechanisms between microorganisms and minerals
L. Shi (2016)
10.1073/pnas.1004880107
Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1
M. El-Naggar (2010)
10.1111/j.1469-185X.1951.tb01204.x
THE IONIC BASIS OF ELECTRICAL ACTIVITY IN NERVE AND MUSCLE
A. Hodgkin (1951)
Self-assembled peptide nanofibers for the development of electrochemical biosensors
J. Castillo (2010)
10.1038/nnano.2014.236
Visualization of charge propagation along individual pili proteins using ambient electrostatic force microscopy.
N. Malvankar (2014)
10.1039/B816647A
Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer
H. Richter (2009)
10.1186/cc9208
Health technology assessment review: Remote monitoring of vital signs - current status and future challenges
V. Nangalia (2010)
10.1146/annurev-physchem-040513-103631
Electron transfer mechanisms of DNA repair by photolyase.
D. Zhong (2015)
10.1039/C1SM06261A
A pH-responsive coiled-coil peptide hydrogel
N. Fletcher (2011)
10.1038/35001029
Direct measurement of electrical transport through DNA molecules
D. Porath (2000)
10.1126/science.1196526
Direct Exchange of Electrons Within Aggregates of an Evolved Syntrophic Coculture of Anaerobic Bacteria
Zarath M. Summers (2010)
10.1088/0957-4484/27/40/402002
Self-assembled peptide nanostructures for functional materials.
Melis Sardan Ekiz (2016)
10.1039/c4cc00717d
Introducing charge transfer functionality into prebiotically relevant β-sheet peptide fibrils.
D. Ivnitski (2014)
10.1021/AR030266L
C-type cytochrome formation: chemical and biological enigmas.
J. Stevens (2004)
10.1128/AEM.58.3.850-856.1992
Reduction of uranium by Desulfovibrio desulfuricans.
D. Lovley (1992)
10.1016/J.PROGPOLYMSCI.2011.04.001
Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers
Y. Long (2011)
10.1063/1.1537918
Band Theory and Electronic Properties of Solids
J. Singleton (2001)
10.1126/science.1156538
Electrical Resistance of Long Conjugated Molecular Wires
Seong Ho Choi (2008)
10.1002/bip.21326
Fibrillar peptide gels in biotechnology and biomedicine
J. P. Jung (2010)
10.1371/journal.pone.0005628
Anode Biofilm Transcriptomics Reveals Outer Surface Components Essential for High Density Current Production in Geobacter sulfurreducens Fuel Cells
K. Nevin (2009)
10.1039/C1EE01753E
On the electrical conductivity of microbial nanowires and biofilms
Sarah M. Strycharz-Glaven (2011)
10.1039/C2CP41185G
Multistep hopping and extracellular charge transfer in microbial redox chains.
Sahand Pirbadian (2012)
10.1021/jp810200x
Linker effects on monolayer formation and long-range electron transfer in helical peptide monolayers.
Y. Arikuma (2009)
10.1016/j.copbio.2013.12.003
Microbial nanowires for bioenergy applications.
N. Malvankar (2014)
10.1063/1.4926395
Charge transport in molecular junctions: From tunneling to hopping with the probe technique.
Michael Kilgour (2015)
10.1021/CR050149Z
Conjugated polymer-based organic solar cells.
S. Güneş (2007)
10.1021/ACSBIOMATERIALS.6B00119
Protein-Based Bioelectronics.
Maria Torculas (2016)
10.1016/0304-4173(85)90014-X
Electron transfers in chemistry and biology
R. Marcus (1985)
10.1038/382731A0
Oxidative DNA damage through long-range electron transfer
D. Hall (1996)
10.1590/S0103-50532008000200003
Quantum tunneling in biological reactions: the interplay between theory and experiments
J. N. Onuchic (2008)
10.1107/S2053229614009449
Folded conformations due to arene interactions in dissymmetric and symmetric butylidene-linker models based on pyrazolo[3,4-d]pyrimidine, purine and 7-deazapurine.
K. Avasthi (2014)
10.1039/C2CP41159H
The influence of dipole moments on the mechanism of electron transfer through helical peptides.
Miriam Lauz (2012)
10.1016/J.CHEMPHYS.2006.01.010
Electron transfer across α-helical peptides: Potential influence of molecular dynamics
H. S. Mandal (2006)
10.1038/srep11677
Redox Linked Flavin Sites in Extracellular Decaheme Proteins Involved in Microbe-Mineral Electron Transfer.
M. Edwards (2015)
10.1109/5.58356
Neuromorphic electronic systems
C. A. Mead (1990)
10.1143/ptps.80.47
Electron correlations in molecules and solids
P. Fulde (1991)
10.1073/pnas.1117592109
Microbial interspecies electron transfer via electric currents through conductive minerals
S. Kato (2012)
10.1002/cssc.201100748
On electron transport through Geobacter biofilms.
D. Bond (2012)
10.1016/j.chembiol.2015.11.010
DNA Charge Transport: from Chemical Principles to the Cell.
A. Arnold (2016)
10.1073/pnas.1606779113
Tuning electronic transport via hepta-alanine peptides junction by tryptophan doping
Cunlan Guo (2016)
10.1021/CR000108X
Hydrogels for tissue engineering.
K. Lee (2001)
10.1021/CM4022003
The Rise of Organic Bioelectronics
J. Rivnay (2014)
10.1177/1535370216640941
Rational design of fiber forming supramolecular structures
V. Kumar (2016)
10.1371/journal.pone.0155247
Redox Conductivity of Current-Producing Mixed Species Biofilms
C. Li (2016)
10.1128/mBio.00084-15
Structural Basis for Metallic-Like Conductivity in Microbial Nanowires
N. Malvankar (2015)
10.1007/978-3-319-31433-4_5
Electrically Conductive Materials for Nerve Regeneration
Elisabeth M. Steel (2016)
10.1038/nmat4454
Implantable electronics: A sensor web for neurons.
Tarun Saxena (2015)
10.1038/NGEO2084
Humic substances as fully regenerable electron acceptors in recurrently anoxic environments
Laura Klüpfel (2014)
10.1007/978-1-59745-218-2_7
Optimizing Photoactive Proteins for Optoelectronic Environments by Using Directed Evolution
Jason R. Hillebrecht (2008)
10.1016/j.cpc.2015.03.009
A framework for stochastic simulations and visualization of biological electron-transfer dynamics
C. Nakano (2015)
10.1128/AEM.00023-10
Alignment of the c-Type Cytochrome OmcS along Pili of Geobacter sulfurreducens
C. Leang (2010)
10.1002/cphc.201100246
Linking spectral and electrochemical analysis to monitor c-type cytochrome redox status in living Geobacter sulfurreducens biofilms.
Y. Liu (2011)
10.1103/PHYSREVB.92.075429
Charge transport in DNA nanowires connected to carbon nanotubes
Bikan Tan (2015)
10.1039/C6CS00176A
Peptide self-assembly: thermodynamics and kinetics.
J. Wang (2016)
10.1002/ADFM.200902066
Electrical Conductance in Biological Molecules
M. Shinwari (2010)
10.1038/35003155
DNA computing on surfaces
Q. Liu (2000)
10.1021/BI00481A001
Structural characteristics of alpha-helical peptide molecules containing Aib residues.
I. Karle (1990)
10.1002/CHEM.200400923
Modulating Charge Transfer through Cyclic D,L-α-Peptide Self-Assembly
W. Horne (2005)
10.1146/ANNUREV.PHYSCHEM.58.032806.104523
Measurement of single-molecule conductance.
F. Chen (2007)
10.1002/bip.22181
Force modulated conductance of artificial coiled-coil protein monolayers.
A. Atanassov (2013)
10.1039/c5nr08803h
Nanostructured conducting polymers for energy applications: towards a sustainable platform.
S. Ghosh (2016)
10.1021/jacs.5b03933
Electronic Transport via Homopeptides: The Role of Side Chains and Secondary Structure.
Lior Sepunaru (2015)
10.1007/BF00249079
Reductive dechlorination of 3-chlorobenzoate is coupled to ATP production and growth in an anaerobic bacterium, strain DCB-1
J. Dolfing (2004)
10.1111/1462-2920.12708
Seeing is believing: novel imaging techniques help clarify microbial nanowire structure and function.
D. Lovley (2015)
10.1039/C6CS00173D
The rise of organic electrode materials for energy storage.
T. B. Schon (2016)
10.1038/nsb969
Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A
M. Bertero (2003)
10.1039/c5cp05152e
Thermally activated long range electron transport in living biofilms.
M. Yates (2015)
10.1007/s10482-015-0644-7
Identification and topographical characterisation of microbial nanowires in Nostoc punctiforme
Sandeep Sure (2015)
10.1128/MMBR.00035-12
Type IV Pilin Proteins: Versatile Molecular Modules
Carmen L. Giltner (2012)
10.1021/AR00148A005
Long-distance electron transfer in proteins and model systems
G. Mclendon (1988)
10.1002/jobm.201200300
Type IV pili of Acidithiobacillus ferrooxidans can transfer electrons from extracellular electron donors
Yongquan Li (2014)
10.1038/nnano.2016.131
A kilobyte rewritable atomic memory.
F. Kalff (2016)
10.1021/jp108685n
Exciton annihilation and energy transfer in self-assembled peptide-porphyrin complexes depends on peptide secondary structure.
D. Kuciauskas (2010)
10.1074/JBC.272.38.23765
Purification and Characterization of the Selenate Reductase from Thauera selenatis *
I. Schröder (1997)
10.1371/journal.pone.0010922
De Novo Assembly of the Complete Genome of an Enhanced Electricity-Producing Variant of Geobacter sulfurreducens Using Only Short Reads
Harish Nagarajan (2010)
10.1006/JMBI.1998.2199
C—H⋯O hydrogen bond involving proline residues in α-helices
P. Chakrabarti (1998)
10.1002/anie.200801310
C-type cytochromes wire electricity-producing bacteria to electrodes.
J. P. Busalmen (2008)
10.7567/JJAP.55.1102B2
Nanoarchitectonic atomic switch networks for unconventional computing
Eleanor Demis (2016)
10.1016/j.cbpa.2008.08.026
Electron transfer in peptides and proteins.
B. Giese (2008)
10.1002/wnan.1424
α-Helical coiled-coil peptide materials for biomedical applications.
Yaoying Wu (2017)
10.1371/journal.pone.0042772
Neuromorphic Atomic Switch Networks
Audrius V. Avizienis (2012)
10.1007/978-3-642-71976-9_5
Ballistic Electron Transport
A. Kawabata (1998)
10.1021/NL0494295
Direct conductance measurement of single DNA molecules in aqueous solution
Bingqian Xu (2004)
10.1146/annurev.micro.61.080706.093130
Anaerobic oxidation of methane: progress with an unknown process.
K. Knittel (2009)
10.1002/adma.201503674
Neuromorphic Functions in PEDOT:PSS Organic Electrochemical Transistors.
Paschalis Gkoupidenis (2015)
10.1007/978-3-319-25448-7
Implantable Medical Electronics
V. Khanna (2016)
10.1111/1758-2229.12204
A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA
Yimo Liu (2014)
10.1023/A:1008362304234
Bioenergetics of sulphate-reducing bacteria in relation to their environmental impact
Hamilton Wa (1998)
10.1042/BST20120046
A long way to the electrode: how do Geobacter cells transport their electrons?
P. S. Bonanni (2012)
10.1634/stemcells.2006-0011
Electrical Stimulation Modulates Fate Determination of Differentiating Embryonic Stem Cells
Masahisa Yamada (2007)
10.1039/C4MH00067F
Polymer memristor for information storage and neuromorphic applications
Y. Chen (2014)
10.1073/pnas.1305244110
Controlling electron transfer at the microbe–mineral interface
D. Richardson (2013)
10.1039/c5lc00809c
Materials for microfabricated implantable devices: a review.
K. Scholten (2015)
10.1021/MZ400329J
Electrochemically Active Polymers for Electrochemical Energy Storage: Opportunities and Challenges
Jared F. Mike (2013)
10.1186/1477-3155-11-24
Fibril-mediated oligomerization of pilin-derived protein nanotubes
A. Petrov (2013)
10.1021/ja8037323
Self-assembly of alpha-helical coiled coil nanofibers.
He Dong (2008)
10.1002/CPLU.201500121
Electron Transfer across Helical Peptides.
N. Amdursky (2015)
10.1002/CNMA.201600048
The Self‐Assembly of Helical Peptide Building Blocks
Sudipta Mondal (2016)
10.1128/AEM.67.1.260-269.2001
Role for Outer Membrane Cytochromes OmcA and OmcB of Shewanella putrefaciens MR-1 in Reduction of Manganese Dioxide
J. Myers (2001)
10.1021/ja104373e
Elementary building blocks of self-assembled peptide nanotubes.
N. Amdursky (2010)
10.1039/c4cs00164h
The physical properties of supramolecular peptide assemblies: from building block association to technological applications.
Lihi Adler-Abramovich (2014)
10.1111/j.1758-2229.2010.00210.x
Specific localization of the c-type cytochrome OmcZ at the anode surface in current-producing biofilms of Geobacter sulfurreducens.
K. Inoue (2011)
10.1126/scitranslmed.3000738
A Conformal, Bio-Interfaced Class of Silicon Electronics for Mapping Cardiac Electrophysiology
Jonathan Viventi (2010)
10.1109/JPROC.1998.658762
Cramming More Components Onto Integrated Circuits
G. E. Moore (1998)
10.1038/nnano.2011.119
Tunable metallic-like conductivity in microbial nanowire networks.
N. Malvankar (2011)
10.1016/J.CPLETT.2009.10.051
Electron Flow through Proteins.
H. Gray (2009)
10.1002/anie.201604833
The Strong Influence of Structure Polymorphism on the Conductivity of Peptide Fibrils.
D. Ivnitski (2016)
10.1073/pnas.1410551111
Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components
Sahand Pirbadian (2014)
10.1016/J.PROGPOLYMSCI.2007.05.012
Conducting polymers in biomedical engineering
N. Guimard (2007)
10.1146/ANNUREV.BB.21.060192.002025
Pathway analysis of protein electron-transfer reactions.
J. Onuchic (1992)
10.1038/148157A0
THE STUDY OF ENERGY–LEVELS IN BIOCHEMISTRY
A. Szent-Gyorgyi (1941)
10.1002/anie.201003389
Electron transfer in peptides: the influence of charged amino acids.
J. Gao (2011)
10.1111/j.1365-2958.2008.06197.x
Type IV pili: e pluribus unum?
V. Pelicic (2008)
10.1039/c6cs00257a
π-Conjugated phospholes and their incorporation into devices: components with a great deal of potential.
M. Duffy (2016)
10.1006/JMBI.1998.2156
Crystal structure of oxidized trimethylamine N-oxide reductase from Shewanella massilia at 2.5 A resolution.
M. Czjzek (1998)
10.1016/j.resmic.2014.09.005
Aeromonas hydrophila produces conductive nanowires.
Laura Castro (2014)
10.1007/978-1-4684-1752-4
Tunneling Phenomena in Solids
E. Burstein (1969)
10.1073/pnas.0710525105
Shewanella secretes flavins that mediate extracellular electron transfer
E. Marsili (2008)
10.1063/1.1404389
Nonadiabatic donor-acceptor electron transfer mediated by a molecular bridge: A unified theoretical description of the superexchange and hopping mechanism
É. G. Petrov (2001)
10.1021/ct900377j
Solvent Effects on Donor-Acceptor Couplings in Peptides. A Combined QM and MD Study.
Frank H. Wallrapp (2009)
10.1021/bi501520w
DNA charge transport within the cell.
Michael A. Grodick (2015)
10.1016/J.JELECHEM.2016.11.005
Proving Geobacter biofilm connectivity with confocal Raman microscopy
L. Robuschi (2017)
10.1021/acs.bioconjchem.6b00284
Self-Assembly of Peptide Bioconjugates: Selected Recent Research Highlights.
I. Hamley (2017)
10.1021/JA00107A031
Direct oxygen atom transfer in the mechanism of action of Rhodobacter sphaeroides dimethyl sulfoxide reductase
B. Schultz (1995)
10.1039/C2SC20045G
Rethinking the term “pi-stacking”
Chelsea R. Martinez (2012)
10.1128/JB.06366-11
Two isoforms of Geobacter sulfurreducens PilA have distinct roles in pilus biogenesis, cytochrome localization, extracellular electron transfer, and biofilm formation.
Lubna V Richter (2012)
10.1074/jbc.M113.498527
Structure of the Type IVa Major Pilin from the Electrically Conductive Bacterial Nanowires of Geobacter sulfurreducens*
P. Reardon (2013)
10.1146/ANNUREV.BIOENG.5.011303.120731
Neural tissue engineering: strategies for repair and regeneration.
C. Schmidt (2003)
10.4172/2254-609X.100013
History and Applications of Hydrogels
L. Yahia (2015)
10.1039/C1SM05611E
Bacterial nanowires: conductive as silicon, soft as polymer
K. M. Leung (2011)
10.1039/c5nr06750b
Sequence dependent proton conduction in self-assembled peptide nanostructures.
Jenny Lerner Yardeni (2016)
10.1039/C5RA08742B
Electron transport through electrically conductive nanofilaments in Rhodopseudomonas palustris strain RP2
Krishnaveni Venkidusamy (2015)
10.1016/S0065-2911(04)49005-5
Dissimilatory Fe(III) and Mn(IV) reduction.
D. Lovley (2004)
10.1038/nature15733
Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria
G. Wegener (2015)
10.1088/1361-6633/aa85f2
Protein bioelectronics: a review of what we do and do not know.
Christopher D. Bostick (2018)
10.1128/JB.00716-16
Significance of a Posttranslational Modification of the PilA Protein of Geobacter sulfurreducens for Surface Attachment, Biofilm Formation, and Growth on Insoluble Extracellular Electron Acceptors.
Lubna V Richter (2017)
10.1128/AEM.65.10.4611-4617.1999
Sulfonates as Terminal Electron Acceptors for Growth of Sulfite-Reducing Bacteria (Desulfitobacterium spp.) and Sulfate-Reducing Bacteria: Effects of Inhibitors of Sulfidogenesis
T. Lie (1999)
10.1038/299371A0
The helical hydrophobic moment: a measure of the amphiphilicity of a helix
D. Eisenberg (1982)
10.1039/C2CP41602F
Solution, surface, and single molecule platforms for the study of DNA-mediated charge transport.
Natalie B. Muren (2012)
10.1038/nature11586
Filamentous bacteria transport electrons over centimetre distances
C. Pfeffer (2012)
10.1021/JA034872N
Long-range electron transfer over 4 nm governed by an inelastic hopping mechanism in self-assembled monolayers of helical peptides.
T. Morita (2003)
10.1039/c3cp50411e
Stepping stones in the electron transport from cells to electrodes in Geobacter sulfurreducens biofilms.
P. S. Bonanni (2013)
10.1039/b719868j
Self-assembly of a peptide rod-coil: a polyproline rod and a cell-penetrating peptide Tat coil.
You-Rim Yoon (2008)
10.1186/1471-2180-9-109
The genome sequence of Geobacter metallireducens: features of metabolism, physiology and regulation common and dissimilar to Geobacter sulfurreducens
M. Aklujkar (2008)
10.1002/adma.201103053
Emergent criticality in complex turing B-type atomic switch networks.
A. Stieg (2012)
10.1038/355796A0
Nature of biological electron transfer
C. Moser (1992)
10.1039/C2EE22330A
Lack of cytochrome involvement in long-range electron transport through conductive biofilms and nanowires of Geobacter sulfurreducens
N. Malvankar (2012)
10.1039/c6cp03583c
Biofilm as a redox conductor: a systematic study of the moisture and temperature dependence of its electrical properties.
Hung Phan (2016)
10.1038/nature13570
Limits on fundamental limits to computation
I. Markov (2014)
10.1039/c0cs00032a
More than just bare scaffolds: towards multi-component and decorated fibrous biomaterials.
D. N. Woolfson (2010)
10.1021/nl400237p
Shewanella oneidensis MR-1 bacterial nanowires exhibit p-type, tunable electronic behavior.
K. Leung (2013)
10.1021/cr900228f
Mechanisms for DNA charge transport.
Joseph C Genereux (2010)
10.1016/S1631-0705(02)01335-X
Organic photovoltaic materials and devices
J. Nunzi (2002)
10.1039/c7cp03651e
Geobacter sulfurreducens pili support ohmic electronic conduction in aqueous solution.
N. Ing (2017)
10.1016/S0966-842X(01)02255-7
The role of bacterial pili in protein and DNA translocation.
R. Koebnik (2001)
10.1016/J.CCR.2012.03.032
Electron hopping through proteins.
J. J. Warren (2012)
10.1021/acs.jpcb.5b03494
How Does Guanine-Cytosine Base Pair Affect Excess-Electron Transfer in DNA?
Shih-hsun Lin (2015)
10.1007/BF00114761
Tunneling enters biology
D. Devault (2004)
10.1021/ja907902h
De novo designed coiled-coil proteins with variable conformations as components of molecular electronic devices.
Clara Shlizerman (2010)
10.1021/JA00035A025
Dynamics of electron hopping in assemblies of redox centers. Percolation and diffusion
D. Blauch (1992)
10.1073/PNAS.0504046102
Molecular electronics
C. Joachim (2005)
10.1021/NL047999Z
DNA-Binding Protein Nanotubes: Learning from Nature's Nanotech Examples
G. Audette (2004)
10.1088/0957-4484/26/12/125702
Structure-dependent electrical conductivity of protein: its differences between alpha-domain and beta-domain structures.
X. Zhang (2015)
導電性ナノワイヤーをShewanella oneidensis菌MR‐1菌株その他の微生物が生成する
A. Yuri (2006)
10.1088/0957-4484/15/8/036
Molecular wires: guiding the super-exchange interactions between two electrodes
C. Joachim (2004)
Dissimilatory Metal Reduction : From Early Life to Bioremediation
D. Lovley (2002)
10.1039/C5RA01851J
Electrically conductive polymers and composites for biomedical applications
G. Kaur (2015)
10.1021/la900987r
Gels as functional nanomaterials for biology and medicine.
B. Xu (2009)
10.1039/C2EE02613A
Comment on “On electrical conductivity of microbial nanowires and biofilms” by S. M. Strycharz-Glaven, R. M. Snider, A. Guiseppi-Elie and L. M. Tender, Energy Environ. Sci., 2011, 4, 4366
N. Malvankar (2012)
10.1021/la103882r
Ultra-long-range electron transfer through a self-assembled monolayer on gold composed of 120-Å-long α-helices.
Y. Arikuma (2011)
10.1039/C6TC00678G
Biodegradable electronics: cornerstone for sustainable electronics and transient applications
M. J. Tan (2016)
10.1039/c5cp03432a
Structural and functional insights into the conductive pili of Geobacter sulfurreducens revealed in molecular dynamics simulations.
G. T. Feliciano (2015)
10.1007/BF02330673
The electrophysics of a nerve fiber
A. Scott (1975)
10.1016/j.bbabio.2012.02.025
Recent progress in biological charge transfer: theory and simulation.
T. Koslowski (2012)
10.1038/35085542
Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling
B. Giese (2001)
10.1002/adma.201404167
Inter-aromatic distances in Geobacter sulfurreducens pili relevant to biofilm charge transport.
Hengjing Yan (2015)
10.3389/fnins.2011.00108
Neuromorphic Silicon Neurons and Large-Scale Neural Networks: Challenges and Opportunities
C. Poon (2011)
10.1128/AEM.00895-14
Direct Interspecies Electron Transfer between Geobacter metallireducens and Methanosarcina barkeri
A. Rotaru (2014)
10.1021/ar800199a
Electron transport in single molecules: from benzene to graphene.
F. Chen (2009)
10.1111/j.1365-2958.2010.07266.x
Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR‐1
Dan Coursolle (2010)
10.1039/C1FD00098E
Physical constraints on charge transport through bacterial nanowires.
N. Polizzi (2012)
10.1021/nn302915s
The smartest materials: the future of nanoelectronics in medicine.
Tzahi Cohen-Karni (2012)
10.3389/fnins.2013.00118
Finding a roadmap to achieve large neuromorphic hardware systems
J. Hasler (2013)
10.5012/BKCS.2010.31.12.3740
Investigation of Self-assembly Structure and Properties of a Novel Designed Lego-type Peptide with Double Amphiphilic Surfaces
Liang Wang (2010)
10.1002/pro.2665
pH responsiveness of fibrous assemblies of repeat‐sequence amphipathic α‐helix polypeptides
T. Takei (2015)
10.1002/ADOM.201300282
Nonlinear Optical Bioinspired Peptide Nanostructures
A. Handelman (2013)
10.1021/acs.langmuir.5b00253
Self-Assembly of a Designed Alternating Arginine/Phenylalanine Oligopeptide.
Carla C. Decandio (2015)
10.1146/ANNUREV.MICRO.58.030603.123600
Anaerobic microbial dehalogenation.
H. Smidt (2004)
10.1126/SCIENCE.1088727
Genome of Geobacter sulfurreducens: Metal Reduction in Subsurface Environments
B. Methé (2003)
10.1038/nnano.2016.191
Reply to 'Measuring conductivity of living Geobacter sulfurreducens biofilms'.
N. Malvankar (2016)
10.1186/s11671-016-1360-6
Crossbar Nanoscale HfO2-Based Electronic Synapses
Y. Matveyev (2016)
10.1021/bi101936c
Hydrophobic, aromatic, and electrostatic interactions play a central role in amyloid fibril formation and stability.
Karen E Marshall (2011)
10.1126/science.1221762
The Connectome of a Decision-Making Neural Network
Travis A. Jarrell (2012)
10.1016/S0167-7799(01)01634-1
Biomaterials integrated with electronic elements: en route to bioelectronics.
I. Willner (2001)
10.3934/BIOENG.2015.3.222
Delving through electrogenic biofilms: from anodes to cathodes to microbes
Lucie Semenec (2015)
10.1128/AEM.60.10.3752-3759.1994
Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism.
F. Caccavo (1994)
10.1021/JA049469A
Conductance titration of single-peptide molecules.
X. Xiao (2004)
10.1007/978-3-319-02630-5_10
Self-organization and Emergence of Dynamical Structures in Neuromorphic Atomic Switch Networks
A. Stieg (2014)
10.1016/0301-0104(90)80026-T
Charge transport in electroactive polymers consisting of fixed molecular Redox sites
E. F. Dalton (1990)
10.1007/s10482-015-0576-2
Inquisition of Microcystis aeruginosa and Synechocystis nanowires: characterization and modelling
Sandeep Sure (2015)
10.1227/01.neu.0000333820.33143.0d
The future of cerebral surgery: a kaleidoscope of opportunities.
James B. Elder (2008)
10.1016/S0301-0082(98)00013-6
Implantable bioelectronic interfaces for lost nerve functions
P. Heiduschka (1998)
10.1039/B505184C
Multi-heme cytochromes--new structures, new chemistry.
C. Mowat (2005)
10.1038/ncomms13482
Formation of bacterial pilus-like nanofibres by designed minimalistic self-assembling peptides
Tom Guterman (2016)
10.1016/j.bbapap.2012.02.009
Investigation of self-assembling proline- and glycine-rich recombinant proteins and peptides inspired by proteins from a symbiotic fungus using atomic force microscopy and circular dichroism spectroscopy.
Rhiannon G Creasey (2012)
10.1002/IJCH.201400161
Peptide Nanostructures with π‐Ways: Photophysical Consequences of Peptide/π‐Electron Molecular Self‐Assembly
J. Tovar (2015)
10.3389/fmicb.2012.00050
Molecular Underpinnings of Fe(III) Oxide Reduction by Shewanella Oneidensis MR-1
L. Shi (2012)
10.1021/ja110858k
Hierarchical self-assembly of semiconductor functionalized peptide α-helices and optoelectronic properties.
R. Kumar (2011)
10.1038/30420
Carbon nanotubes as long ballistic conductors
C. T. White (1998)
10.3389/fmicb.2016.01890
What Is the Essence of Microbial Electroactivity?
C. Koch (2016)
10.1016/S0006-3495(66)86698-5
Studies of photosynthesis using a pulsed laser. I. Temperature dependence of cytochrome oxidation rate in chromatium. Evidence for tunneling.
D. Devault (1966)
10.1073/PNAS.96.21.11713
Long-range charge hopping in DNA.
M. Bixon (1999)
10.1039/9781782622680-00199
Self-assembling peptide motifs for nanostructure design and applications
E. D. Santis (2015)
10.1063/1.3061720
Introduction to solid state physics
C. Kittel (1953)
10.1021/nl801037k
Qualitative mapping of structurally different dipeptide nanotubes.
C. Clausen (2008)
10.1039/C5TB00714C
Electrical stimulation of human mesenchymal stem cells on biomineralized conducting polymers enhances their differentiation towards osteogenic outcomes.
J. Hardy (2015)
10.1039/c5cs00650c
Low bandgap semiconducting polymers for polymeric photovoltaics.
C. Liu (2016)
10.1099/00221287-146-3-551
Bacterial respiration: a flexible process for a changing environment.
D. Richardson (2000)
10.1002/anie.200905621
Electron hopping over 100 A along an alpha helix.
Y. Arikuma (2010)
10.1073/PNAS.95.22.12759
Charge transfer and transport in DNA.
J. Jortner (1998)
10.1038/35015043
Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly
Sandra R. Whaley (2000)
10.1038/srep23517
Thermally activated charge transport in microbial protein nanowires
Sanela Lampa-Pastirk (2016)
10.1039/b805743p
Electron transfer in peptides and proteins.
Meike Cordes (2009)
10.1063/1.3146905
Combined density functional theory and Landauer approach for hole transfer in DNA along classical molecular dynamics trajectories.
P. B. Woiczikowski (2009)
10.1351/PAC199466051077
Glossary of terms used in physical organic chemistry (IUPAC Recommendations 1994)
P. Mueller (1994)
10.1126/science.1118316
The Nature of Aqueous Tunneling Pathways Between Electron-Transfer Proteins
J. Lin (2005)
10.1002/POLB.23809
On the electron transfer through Geobacter sulfurreducens PilA protein
N. Lebedev (2015)
10.1002/anie.200703177
Electron transfer and electronic conduction through an intervening medium.
P. Edwards (2008)
10.1103/RevModPhys.81.109
The electronic properties of graphene
A. Neto (2009)
10.1073/pnas.1316519111
Biological charge transfer via flickering resonance
Y. Zhang (2014)
10.1099/00207713-46-4-1153
Chrysiogenes arsenatis gen. nov., sp. nov., a new arsenate-respiring bacterium isolated from gold mine wastewater.
J. Macy (1996)
10.1002/adma.201401537
Biodegradable nanofibrous polymeric substrates for generating elastic and flexible electronics.
A. Najafabadi (2014)
10.1186/1423-0127-16-108
Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration
A. Subramanian (2009)
10.1021/NL0716451
Direct electrical measurements on single-molecule genomic DNA using single-walled carbon nanotubes.
S. Roy (2008)
10.1039/C3EE42189A
A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane
Amelia-Elena Rotaru (2014)
10.1016/S0380-1330(98)70802-0
Biogeochemical cycling of manganese in Oneida Lake, New York: whole lake studies of manganese.
C. Aguilar (1998)
10.1002/anie.200900827
Electron transfer in peptides with cysteine and methionine as relay amino acids.
M. Wang (2009)
10.1038/nature15512
Single cell activity reveals direct electron transfer in methanotrophic consortia
S. McGlynn (2015)
10.1128/AEM.67.7.3180-3187.2001
Development of a Genetic System forGeobacter sulfurreducens
M. Coppi (2001)
10.1038/30918
Collective dynamics of ‘small-world’ networks
D. Watts (1998)
10.1038/srep23385
Low Energy Atomic Models Suggesting a Pilus Structure that could Account for Electrical Conductivity of Geobacter sulfurreducens Pili
K. Xiao (2016)
10.1103/PHYSREV.71.622
The Band Theory of Graphite
P. Wallace (1947)
10.1017/S0033583503003913
Electron tunneling through proteins.
H. Gray (2003)
10.1021/CR050140X
Charge transport in organic semiconductors.
V. Coropceanu (2007)
10.1021/jz300008s
Electron Transfer Mechanism in Helical Peptides.
H. S. Mandal (2012)
10.1016/j.jvs.2014.12.060
The First-in-Man "Si Se Puede" Study for the use of micro-oxygen sensors (MOXYs) to determine dynamic relative oxygen indices in the feet of patients with limb-threatening ischemia during endovascular therapy.
M. Montero-Baker (2015)
10.1088/1748-6041/7/1/012001
Injectable hydrogel materials for spinal cord regeneration: a review.
D. Macaya (2012)
10.1039/B611448B
Interfacial bridge-mediated electron transfer: mechanistic analysis based on electrochemical kinetics and theoretical modelling.
M. Newton (2007)
10.1016/j.biortech.2015.12.090
Production of electrically-conductive nanoscale filaments by sulfate-reducing bacteria in the microbial fuel cell.
N. Eaktasang (2016)
10.1021/JP201222B
Large Conductance Changes in Peptide Single Molecule Junctions Controlled by pH
L. E. Scullion (2011)
10.1128/AEM.65.6.2691-2696.1999
Reduction of Technetium by Desulfovibrio desulfuricans: Biocatalyst Characterization and Use in a Flowthrough Bioreactor
J. Lloyd (1999)
10.1002/wnan.109
Electrically active nanomaterials as improved neural tissue regeneration scaffolds.
Justin T. Seil (2010)
10.1039/c5cp01442e
A model for ultra-fast charge transport in membrane proteins.
S. Sheu (2015)
10.1039/C5RA28092C
Conductivity of individual Geobacter pili
Ramesh Y. Adhikari (2016)
10.1038/nrmicro885
Type IV pilus structure and bacterial pathogenicity
L. Craig (2004)
10.2307/2300785
Principles of Quantum Mechanics
P. Dirac (1930)
10.1038/nrg3197
Biomolecular computing systems: principles, progress and potential
Yaakov Benenson (2012)
10.1529/biophysj.108.134411
The molecular density of states in bacterial nanowires.
M. El-Naggar (2008)
10.1002/SMLL.200500252
Design of self-assembling peptide nanotubes with delocalized electronic states.
Nurit Ashkenasy (2006)
10.1111/j.1574-6968.2010.02046.x
Production of pilus-like filaments in Geobacter sulfurreducens in the absence of the type IV pilin protein PilA.
Anna Klimes (2010)
10.1016/0005-2728(95)00092-5
Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions.
B. Berks (1995)
10.1038/nbt874
Fabrication of novel biomaterials through molecular self-assembly
S. Zhang (2003)
10.1002/anie.200705588
Influence of amino acid side chains on long-distance electron transfer in peptides: electron hopping via "stepping stones".
Meike Cordes (2008)
10.1063/1.2221693
Charge transport in disordered films of non-redox proteins.
P. P. Pompa (2006)
10.1103/REVMODPHYS.76.195
Colloquium: The quest for high-conductance DNA
R. Endres (2004)
10.1016/j.copbio.2013.02.004
Protein/peptide based nanomaterials for energy application.
J. Lee (2013)
10.1128/AEM.01387-07
Secretion of Flavins by Shewanella Species and Their Role in Extracellular Electron Transfer
Harald von Canstein (2007)
10.1021/CM950192A
Proton Conductivity: Materials and Applications
K. Kreuer (1996)
10.1016/J.CBPA.2006.09.019
Peptide-based fibrous biomaterials: Some things old, new and borrowed.
D. N. Woolfson (2006)
10.1128/mBio.00105-13
Aromatic Amino Acids Required for Pili Conductivity and Long-Range Extracellular Electron Transport in Geobacter sulfurreducens
M. Vargas (2013)
10.1002/ADFM.201200640
Controlling the Synaptic Plasticity of a Cu2S Gap‐Type Atomic Switch
A. Nayak (2012)
10.1016/J.MATCHEMPHYS.2015.03.034
Improved electrical conductance through self-assembly of bioinspired peptides into nanoscale fibers
R. Creasey (2015)
10.1021/JA0401040
Long-range electron transfer across Peptide bridges: the transition from electron superexchange to hopping.
Rouba Abdel Malak (2004)
10.1039/C2SM26017D
Conductance of amyloid β based peptide filaments: structure–function relations
M. Amit (2012)
10.1021/es903043p
Quantification of electron transfer rates to a solid phase electron acceptor through the stages of biofilm formation from single cells to multicellular communities.
J. McLean (2010)
10.1146/ANNUREV.MI.25.100171.002141
Ion transport by energy-conserving biological membranes.
P. J. Henderson (1971)
10.1039/c3cp51748a
Enhanced solid-state electron transport via tryptophan containing peptide networks.
N. Amdursky (2013)
10.1039/c1cp21338e
The role of self-assembling polypeptides in building nanomaterials.
L. Liu (2011)
10.1021/ar900123t
Steering electrons on moving pathways.
D. Beratan (2009)
10.1002/bip.22148
Review peptides and proteins wired into the electrical circuits: An SPM‐based approach
S. Sek (2013)
10.1002/bip.22171
Following the energy transfer in and out of a polyproline-peptide.
W. Schreier (2013)
10.1126/science.aad4424
Photovoltaic materials: Present efficiencies and future challenges
A. Polman (2016)
10.1002/9781119097426.CH7
Electronic Conductivity in Living Biofilms: Physical Meaning, Mechanisms, and Measurement Methods
N. Malvankar (2015)
An investigation of the conductivity of peptide nanostructured hydrogels via molecular self-assembly
H. Xu (2011)
10.1002/adma.200903680
Learning abilities achieved by a single solid-state atomic switch.
T. Hasegawa (2010)
10.1021/jp302232p
Molecular and electronic structure of the peptide subunit of Geobacter sulfurreducens conductive pili from first principles.
Gustavo T. Feliciano (2012)
10.1038/nature03661
Extracellular electron transfer via microbial nanowires
G. Reguera (2005)
10.1109/MCOM.2010.5473872
Nanoscale materials and devices for future communication networks
M. Islam (2010)
10.1039/c5cp05938k
Interfacial zippering-up of coiled-coil protein filaments.
E. D. Santis (2015)
10.1016/J.ELECTACTA.2016.03.074
Disentangling the roles of free and cytochrome-bound flavins in extracellular electron transport from Shewanella oneidensis MR-1
S. Xu (2016)
10.1039/C1IC90017J
DNA-based nanowires. Towards bottom-up nanoscale electronics
A. Houlton (2011)
10.1039/b9nr00233b
An investigation of the conductivity of peptide nanotube networks prepared by enzyme-triggered self-assembly.
H. Xu (2010)
10.1007/s11095-008-9802-1
Targeted Delivery with Peptidomimetic Conjugated Self-Assembled Nanoparticles
E. Jabbari (2008)
10.1002/smll.201601112
Synthetic Biological Protein Nanowires with High Conductivity.
Yang Tan (2016)
10.1074/JBC.273.25.15458
pi-Stacking interactions. Alive and well in proteins.
G. McGaughey (1998)
10.1073/pnas.1108616108
Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism
D. Cologgi (2011)
10.1038/nmat3054
Short-term plasticity and long-term potentiation mimicked in single inorganic synapses.
T. Ohno (2011)
10.1007/978-3-642-32867-1_2
Energetic and Molecular Constraints on the Mechanism of Environmental Fe(III) Reduction by Geobacter
Caleb E. Levar (2013)
10.1038/46972
Natural engineering principles of electron tunnelling in biological oxidation–reduction
Christopher C. Page (1999)
10.1039/B603080G
The structure of nanotubes formed by diphenylalanine, the core recognition motif of Alzheimer's beta-amyloid polypeptide.
C. Görbitz (2006)
10.1109/ISQED.2016.7479186
Neuromorphic architectures with electronic synapses
S. B. Eryilmaz (2016)
10.1002/POC.3416
Proline as a charge stabilizing amino acid in peptide radical cations
Nicolas P.-A. Monney (2015)
10.1002/bip.22169
Reviewprobing protein electron transfer mechanisms from the molecular to the cellular length scales
S. Skourtis (2013)
10.1039/c4cs00297k
Electron transfer in peptides.
A. Shah (2015)
10.1016/j.sbi.2015.05.009
De novo protein design: how do we expand into the universe of possible protein structures?
D. N. Woolfson (2015)
10.1038/ncomms12217
Mechanistic stratification in electroactive biofilms of Geobacter sulfurreducens mediated by pilus nanowires
R. J. Steidl (2016)
10.1142/p173
Atomic Force Microscopy for Biologists
V. Morris (1999)
10.1021/ja500215j
Long-Range Electron Tunneling
J. Winkler (2014)
10.1021/JA043607E
Evidence against the hopping mechanism as an important electron transfer pathway for conformationally constrained oligopeptides.
F. Polo (2005)
10.1021/jp805711v
Effects of monolayer structures on long-range electron transfer in helical peptide monolayer.
K. Takeda (2008)
10.2533/chimia.2013.855
The search for relay stations. Long-distance electron transfer in peptides.
B. Giese (2013)
10.1586/17434440.4.6.895
What the future holds for deep brain stimulation
A. Benabid (2007)
10.1016/j.csbj.2016.06.003
Deep brain stimulation versus motor cortex stimulation for neuropathic pain: A minireview of the literature and proposal for future research
C. Honey (2016)
10.1073/pnas.1220823110
Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones
A. Okamoto (2013)
10.1038/382445A0
Humic substances as electron acceptors for microbial respiration
D. Lovley (1996)
10.1099/mic.0.000382
Microbial Nanowires: An Electrifying Tale.
Sandeep Sure (2016)
10.1039/C6EE01699E
The relay network of Geobacter biofilms
M. V. Ordóñez (2016)
10.1126/science.240.4857.1319
Bacterial Manganese Reduction and Growth with Manganese Oxide as the Sole Electron Acceptor
C. Myers (1988)
10.1038/366324A0
Self-assembling organic nanotubes based on a cyclic peptide architecture
M. Ghadiri (1993)
10.1021/ja907328r
Proteins as electronic materials: electron transport through solid-state protein monolayer junctions.
I. Ron (2010)
10.1002/cssc.201100733
Microbial nanowires: a new paradigm for biological electron transfer and bioelectronics.
N. Malvankar (2012)
10.1128/mBio.00270-13
Molecular Dissection of Bacterial Nanowires
T. Boesen (2013)
10.1002/PSC.974
Distance dependence of long‐range electron transfer through helical peptides
M. Kai (2008)
10.1128/AEM.06803-11
Dissimilatory Reduction of Extracellular Electron Acceptors in Anaerobic Respiration
Katrin Richter (2011)
10.1016/J.BMC.2006.05.067
Electron transfer through DNA and peptides.
B. Giese (2006)
10.1128/mBio.02203-16
Expressing the Geobacter metallireducens PilA in Geobacter sulfurreducens Yields Pili with Exceptional Conductivity
Yang Tan (2017)
10.1088/0957-4484/24/38/382001
Synaptic electronics: materials, devices and applications.
D. Kuzum (2013)
10.1021/ES800970W
Kinetic experiments for evaluating the Nernst-Monod model for anode-respiring bacteria (ARB) in a biofilm anode.
C. Torres (2008)
10.1021/jp5086894
Donor/acceptor coupling shortcuts in electron transfer within ruthenium-modified derivatives of cytochrome b(562).
T. Prytkova (2015)
10.1016/j.copbio.2013.03.011
Biomimetic conducting polymer-based tissue scaffolds.
John G. Hardy (2013)
10.1146/ANNUREV.BIOCHEM.75.101304.123901
Protein misfolding, functional amyloid, and human disease.
F. Chiti (2006)
10.1038/nchem.982
DNA charge transport over 34 nm.
J. Slinker (2011)
10.1016/J.PHYSLETA.2016.02.043
Low-temperature photoluminescence in self-assembled diphenylalanine microtubes
T. Nikitin (2016)
10.1002/ANIE.200601623
Distal charge transport in peptides.
E. Schlag (2007)
10.1039/c5sm00072f
Tuning self-assembly in elastin-derived peptides.
B. Bochicchio (2015)
10.1073/PNAS.0604517103
Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms.
Y. Gorby (2006)
10.1002/bem.21813
Implantable and ingestible medical devices with wireless telemetry functionalities: a review of current status and challenges.
A. Kiourti (2014)
10.1002/ADFM.201401111
Hybrid Proton and Electron Transport in Peptide Fibrils
M. Amit (2014)
10.1021/JA953563X
Electron Delocalization and the Fermi Hole
R. Bader (1996)
10.1128/JB.181.1.40-46.1999
Evidence for a chemiosmotic model of dehalorespiration in Desulfomonile tiedjei DCB-1.
T. M. Louie (1999)
10.1016/J.PROGPOLYMSCI.2013.06.003
Biodegradable and electrically conducting polymers for biomedical applications
B. Guo (2013)



This paper is referenced by
10.1002/cjce.23836
Challenges in Engineering Conductive Protein Fibres: Disentangling the Knowledge
Sophia Roy (2020)
10.3389/fmicb.2019.02078
Geobacter Protein Nanowires
D. Lovley (2019)
10.1128/mBio.00579-19
The Archaellum of Methanospirillum hungatei Is Electrically Conductive
David J F Walker (2019)
10.1038/s42003-019-0448-9
Cryo-EM reveals the structural basis of long-range electron transport in a cytochrome-based bacterial nanowire
D. Filman (2019)
10.1039/d0tb01390k
Engineering proton conductivity in melanin using metal doping.
A. Mostert (2020)
10.1021/acssynbio.9b00131
Decorating the Outer Surface of Microbially Produced Protein Nanowires with Peptides.
T. Ueki (2019)
10.1093/femsre/fuz031
The Shewanella genus: ubiquitous organisms sustaining and preserving aquatic ecosystems.
O. N. Lemaire (2020)
10.2210/PDB6NEF/PDB
Cryo-EM reveals the structural basis of long-range electron transport in a cytochrome-based bacterial nanowire.
D. Filman (2019)
10.2139/ssrn.3538706
Cable bacteria as long-range biological semiconductors
Robin Bonné (2019)
10.1101/492645
Structure of a cytochrome-based bacterial nanowire
D. Filman (2018)
10.31223/osf.io/bae7t
Possible Tectonic Impact of Biosphere
E. Bagashov (2019)
10.1021/ACSOMEGA.8B02231
Biomimetic Peptide Nanowires Designed for Conductivity
R. Creasey (2019)
10.2217/bem-2018-0003
Toward peptide-based bioelectronics: reductionist design of conductive pili mimetics.
Tom Guterman (2018)
10.1101/856302
An Escherichia coli Chassis for Production of Electrically Conductive Protein Nanowires
T. Ueki (2019)
10.1039/c9me00082h
Assessing the effect of aromatic residues placement on α-helical peptide structure and nanofibril formation of 21-mer peptides
A. Solemanifar (2020)
10.1016/j.biotechadv.2020.107682
Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms.
Juntao Zhao (2020)
10.1134/S1061934820090026
A Hybrid Redox-Active Polymer Based on Bovine Serum Albumin, Ferrocene, Carboxylated Carbon Nanotubes, and Glucose Oxidase
V. A. Arlyapov (2020)
10.1101/590224
Decorating Microbially Produced Protein Nanowires with Peptide Ligands
T. Ueki (2019)
10.1038/s41598-020-76671-5
Intrinsic electrical properties of cable bacteria reveal an Arrhenius temperature dependence
Robin Bonné (2020)
10.1016/j.bbabio.2020.148271
Thermodynamic properties of triheme cytochrome PpcF from Geobacter metallireducens reveal unprecedented functional mechanism.
Marisa R Ferreira (2020)
10.1101/458356
The Archaellum of Methanospirillum hungatei is Electrically Conductive
David J F Walker (2018)
10.1016/j.ijhydene.2020.10.042
Glucose electro-fermentation with mixed cultures: A key role of the Clostridiaceae family
Javiera Toledo-Alarcón (2020)
10.1039/d0nh00415d
Long-lived charged states of single porphyrin-tape junctions under ambient conditions.
E. Leary (2020)
10.1016/j.physa.2019.122789
Stochastic Impedance.
B. Cleuren (2019)
Semantic Scholar Logo Some data provided by SemanticScholar