Online citations, reference lists, and bibliographies.
← Back to Search

Magnetic Fluid Hyperthermia: Focus On Superparamagnetic Iron Oxide Nanoparticles.

S. Laurent, S. Dutz, U. Häfeli, M. Mahmoudi
Published 2011 · Materials Science, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
Due to their unique magnetic properties, excellent biocompatibility as well as multi-purpose biomedical potential (e.g., applications in cancer therapy and general drug delivery), superparamagnetic iron oxide nanoparticles (SPIONs) are attracting increasing attention in both pharmaceutical and industrial communities. The precise control of the physiochemical properties of these magnetic systems is crucial for hyperthermia applications, as the induced heat is highly dependent on these properties. In this review, the limitations and recent advances in the development of superparamagnetic iron oxide nanoparticles for hyperthermia are presented.
This paper references
10.1016/J.JMMM.2006.11.063
Heating efficiency of magnetite particles exposed to AC magnetic field
T. Atsumi (2007)
10.1016/0168-3659(87)90090-3
Design and evaluation of controlled release systems for the eye
R. Gurny (1987)
10.1016/j.biomaterials.2009.09.091
The in vivo performance of magnetic particle-loaded injectable, in situ gelling, carriers for the delivery of local hyperthermia.
Pol-Edern Le Renard (2010)
10.1016/S0304-8853(01)01369-5
Magnetic DC field and temperature dependence on complex microwave magnetic permeability of ferrofluids: effect of constituent elements of substituted Mn ferrite
G. M. Sutariya (2003)
10.1016/J.JMMM.2006.11.160
Synthesis and investigation of magnetic properties of substituted ferrite nanoparticles of spinel system Mn1−xZnx[Fe2−yLy]O4
T. Brusentsova (2007)
10.1021/jp803016n
Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging.
M. Mahmoudi (2008)
10.1007/s00270-009-9583-x
Thermoablation of Malignant Kidney Tumors Using Magnetic Nanoparticles: An In Vivo Feasibility Study in a Rabbit Model
P. Bruners (2009)
10.1007/s11094-005-0096-x
Cytotoxicity of Photoheme-Containing Ferrimagnetic Fluid in Alternating Magnetic Field
N. A. Brusentsov (2005)
10.1088/0953-8984/17/1/013
High magnetization and the high-temperature superparamagnetic transition with intercluster interaction in disordered zinc ferrite thin film.
S. Nakashima (2005)
10.1080/02656730801907937
Controlling nanoparticle delivery in magnetic nanoparticle hyperthermia for cancer treatment: Experimental study in agarose gel
M. Salloum (2008)
10.1016/0304-8853(94)01621-6
DC-SQUID Magnetization Measurements of Single Magnetic Particles
W. Wernsdorfer (1995)
10.1002/ADEM.200990035
Cytotoxicity and Cell Cycle Effects of Bare and Poly(vinyl alcohol)‐Coated Iron Oxide Nanoparticles in Mouse Fibroblasts
M. Mahmoudi (2009)
10.1007/BF02798277
Thermomagnetic surgery for cancer
R. W. Rand (1981)
10.1021/JA0380852
Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles.
S. Sun (2004)
10.1016/J.JMMM.2009.02.073
Ferrofluids of magnetic multicore nanoparticles for biomedical applications
S. Dutz (2009)
10.1021/JP9001516
Cytotoxicity of Uncoated and Polyvinyl Alcohol Coated Superparamagnetic Iron Oxide Nanoparticles
M. Mahmoudi (2009)
10.1016/S0169-409X(01)00204-6
Thermosensitive polymer-modified liposomes.
K. Kono (2001)
10.1016/J.EJPB.2004.03.019
In situ-forming hydrogels--review of temperature-sensitive systems.
È. Ruel-Gariépy (2004)
10.1088/0957-4484/14/12/003
Determination of energy barrier distributions of magnetic nanoparticles by temperature dependent magnetorelaxometry.
E. Romanus (2003)
10.1021/JA0380594
Synthesis of monodisperse superparamagnetic Fe/silica nanospherical composites.
P. Tartaj (2003)
10.1016/J.TSF.2009.12.112
Templated growth of superparamagnetic iron oxide nanoparticles by temperature programming in the presence of poly(vinyl alcohol)
M. Mahmoudi (2010)
10.1021/JP900798R
Superparamagnetic Iron Oxide Nanoparticles with Rigid Cross-linked Polyethylene Glycol Fumarate Coating for Application in Imaging and Drug Delivery
M. Mahmoudi (2009)
10.1063/1.1721848
Kinetics of Magnetization in Some Square Loop Magnetic Tapes
C. Bean (1955)
10.1021/MA0354039
Synthesis and Associating Properties of Poly(ethoxyethyl glycidyl ether)/Poly(propylene oxide) Triblock Copolymers
Philip Dimitrov (2004)
10.1021/JA067457E
Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia.
Jean-Paul Fortin (2007)
10.1016/S0022-1759(01)00433-1
Normal T-cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived superparamagnetic nanoparticles.
C. H. Dodd (2001)
10.1016/0306-9877(79)90063-X
Intracellular hyperthermia. A biophysical approach to cancer treatment via intracellular temperature and biophysical alterations.
R. Gordon (1979)
10.1021/cr1001832
Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine.
M. Mahmoudi (2011)
10.3390/cancers3010428
Progress in Nanotechnology Based Approaches to Enhance the Potential of Chemopreventive Agents
Irfana Muqbil (2011)
10.1016/S0360-3016(00)00650-7
Preoperative radiochemotherapy in locally advanced or recurrent rectal cancer: regional radiofrequency hyperthermia correlates with clinical parameters.
B. Rau (2000)
10.3109/02656731003745740
Magnetic nanoparticle hyperthermia for prostate cancer
M. Johannsen (2010)
10.1080/02656730601150522
A head and neck hyperthermia applicator: Theoretical antenna array design
M. Paulides (2007)
10.1088/0022-3727/35/6/201
Finite-size effects in fine particles: magnetic and transport properties
X. Batlle (2002)
10.1023/A:1004525410324
Synthesis and properties of Mn-Zn ferrite ferrofluids
E. Auzāns (1999)
10.3109/02656730903287790
Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia
A. Jordan (2009)
10.2174/157341308783591861
Magnetic Nanoparticles for Cancer Therapy
G. F. Goya (2008)
10.1007/s11060-006-9195-0
Intracranial Thermotherapy using Magnetic Nanoparticles Combined with External Beam Radiotherapy: Results of a Feasibility Study on Patients with Glioblastoma Multiforme
K. Maier-Hauff (2006)
10.1097/01.rli.0000209601.15533.5a
Local Arterial Infusion of Superparamagnetic Iron Oxide Particles in Hepatocellular Carcinoma: A Feasibility and 3.0 T MRI Study
O. Dudeck (2006)
10.1103/PHYSREV.99.463
Multiple Resonances in Cobalt Ferrite
P. Tannenwald (1955)
10.1021/JA000784G
Chemical Control of Superparamagnetic Properties of Magnesium and Cobalt Spinel Ferrite Nanoparticles through Atomic Level Magnetic Couplings
C. Liu (2000)
10.1016/j.jconrel.2009.06.002
Enhanced magnetic resonance imaging of experimental pancreatic tumor in vivo by block copolymer-coated magnetite nanoparticles with TGF-beta inhibitor.
M. Kumagai (2009)
10.1016/j.addr.2010.05.006
Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy.
M. Mahmoudi (2011)
10.1103/PHYSREVLETT.80.4092
Globule-to-Coil Transition of a Single Homopolymer Chain in Solution
Chi Wu (1998)
MOLECULAR-BIOLOGICAL PROBLEMS OF DRUG DESIGN AND MECHANISM OF DRUG ACTION CYTOTOXICITY OF PHOTOHEME-CONTAINING FERRIMAGNETIC FLUID IN ALTERNATING MAGNETIC FIELD
N. A. Brusentsov (2005)
[Development of anticancer-agent-releasing microcapsules for chemotherapy combined with embolo-hyperthermic therapy].
A. Masai (1995)
10.1063/1.1745303
The Coercive Force of Magnetite Powders
V. H. Gottschalk (1935)
10.1016/J.JMMM.2006.02.264
Magnetic properties of the ferrimagnetic glass-ceramics for hyperthermia
O. Bretcanu (2006)
10.1166/JNN.2010.1913
Improving the anti-tumor effect of genistein with a biocompatible superparamagnetic drug delivery system.
Hua-Yan Si (2010)
10.1016/J.JMMM.2006.10.1156
Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy
R. Hergt (2007)
10.1081/MA-120030919
Thermoassociative Block Copolymers of Poly(N‐Isopropylacrylamide) and Poly(Propylene Oxide)
E. Hasan (2004)
10.1021/IE070909R
Useful Remarks To Reduce the Experimental Information Required To Determine the Equilibrium Water Content of Gas Near and Inside Gas Hydrate or Ice Formation Regions
A. Mohammadi (2008)
10.1103/PHYSREVB.52.15951
Effect of an oblique magnetic field on the superparamagnetic relaxation time
W. Coffey (1995)
10.1021/MA00133A001
Living polymerization of isobutyl vinyl ether with hydrogen iodide/iodine initiating system
M. Miyamoto (1984)
10.1186/1472-6750-9-84
Thermochemotherapy effect of nanosized As2O3/Fe3O4 complex on experimental mouse tumors and its influence on the expression of CD44v6, VEGF-C and MMP-9
Yiqun Du (2009)
10.1016/J.ADDR.2004.02.014
Nanoparticle and targeted systems for cancer therapy.
L. Brannon-Peppas (2004)
10.1103/PHYSREVB.51.15947
Constant-magnetic-field effect in Néel relaxation of single-domain ferromagnetic particles.
Coffey (1995)
10.1088/0957-4484/21/1/015706
Validity limits of the Néel relaxation model of magnetic nanoparticles for hyperthermia.
R. Hergt (2010)
10.1023/A:1014013110541
Iron(III) Oxide Nanoparticles in a Polyethylene Matrix
G. Yurkov (2002)
10.1166/JNN.2007.18112
Magnetic nanoparticles for intracranial thermotherapy.
A. Jordan (2007)
10.1080/02656730802104757
Clinical applications of magnetic nanoparticles for hyperthermia
B. Thiesen (2008)
10.1021/cr068445e
Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications.
S. Laurent (2008)
10.1111/j.1349-7006.2001.tb01070.x
Targeting Hyperthermia for Renal Cell Carcinoma Using Human MN Antigenspecific Magnetoliposomes
M. Shinkai (2001)
10.1016/J.POLYMER.2005.03.101
Stimuli responsive amphiphilic block copolymers for aqueous media synthesised via reversible addition fragmentation chain transfer polymerisation (RAFT)
M. Mertoğlu (2005)
10.1016/0378-5173(92)90353-4
In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers
C. Lehr (1992)
10.1021/MA035658M
Highly pH and temperature responsive microgels functionalized with vinylacetic acid
T. Hoare (2004)
Study on angiogenesis-targeting peptide modified iron oxide nanoparticles used in local magnetic hyperthermia in tumor-bearing nude mouse models
Z. Cai-cun (2010)
10.2217/17435889.4.2.219
Toxicity of therapeutic nanoparticles.
Melissa A. Maurer-Jones (2009)
10.1007/S11771-004-0034-1
Effects of La3+ doping on MnZn ferrite nanoscale particles synthesized by hydrothermal method
Gu Ying-ying (2004)
10.1051/ANALUSIS:2000154
Fullerene C$_{60}$ immobilized in polymethylmethacrylate film as an optical temperature sensing material
Y. Amao (2000)
10.1021/MA9809482
Controlled Anionic Polymerization of tert-Butyl Acrylate with Diphenylmethyl Anions in the Presence of Dialkylzinc
T. Ishizone (1998)
10.1088/0031-9155/55/3/005
Magnetorelaxometry for localization and quantification of magnetic nanoparticles for thermal ablation studies.
H. Richter (2010)
10.1016/J.CECA.2004.10.008
Optical single-channel recording by imaging Ca2+ flux through individual ion channels: theoretical considerations and limits to resolution.
J. Shuai (2005)
10.1088/0031-9155/38/8/001
Effect of frequency and conductivity on field penetration of electromagnetic hyperthermia applicators.
R. H. Johnson (1993)
10.1016/J.MSEC.2006.05.027
Magnetic PNIPA hydrogels for hyperthermia applications in cancer therapy
K.L. Ang (2007)
10.1007/978-0-387-85600-1_20
APPLICATIONS OF MAGNETIC NANOPARTICLES IN BIOMEDICINE
C. Bárcena (2003)
10.1038/nm1467
Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging
Jaehyun Lee (2007)
10.1016/S0304-8853(98)00558-7
Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro
A. Jordan (1999)
10.1016/0022-4804(82)90026-9
Thermomagnetic surgery for cancer.
R. W. Rand (1982)
10.1007/s11060-005-9059-z
The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma
A. Jordan (2005)
10.1016/J.PROGPOLYMSCI.2007.07.001
Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities
I. Dimitrov (2007)
10.1007/S11051-008-9548-Z
Newer nanoparticles in hyperthermia treatment and thermometry
R. Sharma (2009)
10.1080/02656730601106037
Magnetic nanoparticles for interstitial thermotherapy – feasibility, tolerance and achieved temperatures
>Peter Wust (2006)
10.1021/LA047629Q
Magnetic switch of permeability for polyelectrolyte microcapsules embedded with Co@Au nanoparticles.
Z. Lu (2005)
10.1080/02656730802713557
Local moderate magnetically induced hyperthermia using an implant formed in situ in a mouse tumor model
Pol-Edern Le Renard (2009)
10.1063/1.1729324
Particle Size Dependence of Coercivity and Remanence of Single‐Domain Particles
E. Kneller (1963)
10.1097/00000658-195710000-00007
Selective Inductive Heating of Lymph Nodes
R. Gilchrist (1957)
10.1039/B711962C
Gd-doped iron-oxide nanoparticles for tumour therapy via magnetic field hyperthermia
Philip Drake (2007)
10.1016/J.JMMM.2006.11.179
Magnetite ferrofluid with high specific absorption rate for application in hyperthermia
Li-ying Zhang (2007)
10.1016/J.MRI.2004.01.050
MR imaging of the her2/neu and 9.2.27 tumor antigens using immunospecific contrast agents.
M. Funovics (2004)
10.1002/PROS.20213
Magnetic fluid hyperthermia (MFH)reduces prostate cancer growth in the orthotopic Dunning R3327 rat model
M. Johannsen (2005)
10.1016/J.POLYMER.2007.02.004
“Smart” nanoparticles: Preparation, characterization and applications
M. Ballauff (2007)
10.1063/1.373266
Slow magnetization dynamics of small permalloy islands
H. Koo (2000)
10.1063/1.1149496
The new infrared imaging system on Alcator C-Mod
R. Maqueda (1999)
10.1109/9780470546581
The physical principles of magnetism
A. Morrish (1965)
10.1002/JBM.A.10062
Macroporous poly(N-isopropylacrylamide) hydrogels with fast response rates and improved protein release properties.
S. Cheng (2003)
10.1148/RADIOLOGY.171.3.2717764
Temperature mapping with MR imaging of molecular diffusion: application to hyperthermia.
D. Le Bihan (1989)
10.1070/RC2005V074N06ABEH000897
Magnetic nanoparticles: preparation, structure and properties
S. Gubin (2005)
Materials Research Society Symposium - Proceedings
T. Watanabe (2000)
10.1021/IE800824Q
Fe3O4/poly(N-Isopropylacrylamide)/Chitosan Composite Microspheres with Multiresponsive Properties
P. Li (2008)
10.1016/j.jcis.2009.04.046
Cell toxicity of superparamagnetic iron oxide nanoparticles.
M. Mahmoudi (2009)
10.1088/0305-4608/10/9/006
The magnetic field dependence of the susceptibility peak of some spin glass materials
E. Wohlfarth (1980)
10.1016/0168-3659(95)00134-4
Pulsatile local delivery of thrombolytic and antithrombotic agents using poly(N-isopropylacrylamide-co-methacrylic acid) hydrogels
C. Brazel (1996)
10.1016/S0304-8853(02)00706-0
Heating magnetic fluid with alternating magnetic field
R. E. Rosensweig (2002)
10.1080/02656730601175479
Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: Results of a prospective phase I trial
M. Johannsen (2007)
10.1016/j.actbio.2009.10.017
Poly(ethylene glycol)-based magnetic hydrogel nanocomposites for hyperthermia cancer therapy.
S. Meenach (2010)
10.1063/1.1721912
Hysteresis Loops of Mixtures of Ferromagnetic Micropowders
C. Bean (1955)
10.1007/s00249-007-0197-4
Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles
Jean-Paul Fortin (2007)
10.1016/J.JMMM.2004.11.005
Preparation of magnetic nanoparticles with large specific loss power for heating applications
R. Muller (2005)
10.1080/02656730400013855
Assessment of the local SAR distortion by major anatomical structures in a cylindrical neck phantom
M. Paulides (2005)
10.1088/0953-8984/18/38/S26
Magnetic particle hyperthermia : nanoparticle magnetism and materials development for cancer therapy
R. Hergt (2006)
10.1088/0953-8984/15/20/202
TOPICAL REVIEW: Nanomagnetics
R. Skomski (2003)
10.1016/j.addr.2012.09.012
Thermosensitive sol-gel reversible hydrogels.
B. Jeong (2002)
10.1103/PHYSREV.60.134
Magnetic Studies of Solid Solutions II. The Properties of Quenched Copper-Iron Alloys
F. Bitter (1941)
10.1263/JBB.100.1
Medical application of functionalized magnetic nanoparticles.
A. Ito (2005)
10.1016/0378-5173(89)90193-2
Evaluation of muco-adhesive properties and in vivo activity of ophthalmic vehicles based on hyaluronic acid
M. Saettone (1989)
10.1103/PHYSREV.54.1092
The Magnetization of Ferromagnetic Colloids
W. Elmore (1938)
10.1038/NMAT1251
Ultra-large-scale syntheses of monodisperse nanocrystals
J. Park (2004)
10.1021/MA00183A001
Immortal polymerization: polymerization of epoxide and .beta.-lactone with aluminum porphyrin in the presence of protic compound
T. Aida (1988)
10.1063/1.1656224
Cation Distributions in Octahedral and Tetrahedral Sites of the Ferrimagnetic Spinel CoFe2O4
G. A. Sawatzky (1968)
10.2310/7290.2007.00025
Targeting and Cellular Trafficking of Magnetic Nanoparticles for Prostate Cancer Imaging
R. Serda (2007)
10.1103/PHYSREVB.29.4156
Nonuniqueness of H 2 3 and H 2 field-temperature transition lines in spin-glasses
L. Wenger (1984)
10.1557/PROC-1064-PP03-04
The Effects of Chemical Functionalization vs. Biological Functionalization on Nanoparticle Binding Affinity
J. Benkoski (2007)
10.1016/J.JNONCRYSOL.2006.12.045
Ultrafine Co1−xZnxFe2O4 particles synthesized by hydrolysis: Effect of thermal treatment and its relationship with magnetic properties
Giap V. Duong (2007)
10.1039/b801041b
Zinc ferrite nanoparticles as MRI contrast agents.
C. Bárcena (2008)
10.1002/MARC.1997.030180502
Novel core-shell type thermo-sensitive nanoparticles composed of poly(γ-benzyl L-glutamate) as the core and poly(N-isopropylacrylamide) as the shell
Chong-su Cho (1997)
10.1039/B412330A
Novel emulsions stabilized by pH and temperature sensitive microgels.
T. Ngai (2005)
10.1103/PHYSREV.70.965
Theory of the structure of ferromagnetic domains in films and small particles
C. Kittel (1946)
10.1103/PHYSREV.130.1677
Thermal Fluctuations of a Single-Domain Particle
J. W. F. Brown (1963)
10.1063/1.373259
Single nanoparticle measurement techniques
W. Wernsdorfer (2000)
10.1016/S0304-8853(02)00898-3
Ordered magnetic nanostructures: fabrication and properties
J. Martín (2003)
10.1186/1471-2407-10-119
A/C magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles: a mouse study
Sivasai Balivada (2009)
10.1088/0022-3727/36/13/201
TOPICAL REVIEW: Applications of magnetic nanoparticles in biomedicine
Q. Pankhurst (2003)
10.1016/S0360-3016(97)00731-1
Survival benefit of hyperthermia in a prospective randomized trial of brachytherapy boost +/- hyperthermia for glioblastoma multiforme.
P. Sneed (1998)
10.1021/NL0624263
Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling.
Chen-Wen Lu (2007)
10.1080/02656730500158360
Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique
M. Johannsen (2005)
10.1021/cr1003166
Effect of nanoparticles on the cell life cycle.
M. Mahmoudi (2011)
10.1021/MA035037T
Stimuli-Responsive Diblock Copolymers by Living Cationic Polymerization: Precision Synthesis and Highly Sensitive Physical Gelation
S. Sugihara (2004)
10.1007/s11671-008-9122-8
Multifunctional Magnetic-fluorescent Nanocomposites for Biomedical Applications
S. Corr (2008)
10.1016/J.JCONREL.2003.09.013
An overview of current delivery systems in cancer gene therapy.
Anas El-Aneed (2004)
10.1016/0304-8853(94)00863-9
Effect of an oblique magnetic field on the superparamagnetic relaxation time.
Coffey (1995)
10.1016/S0304-8853(03)00271-3
Magnetic and structural properties of Co nanoparticles in a polymeric matrix
S. Gubin (2003)
10.1021/LA0351562
Functional group distributions in carboxylic acid containing poly(N-isopropylacrylamide) microgels.
T. Hoare (2004)
10.1146/ANNUREV.BIOENG.2.1.9
Physicochemical foundations and structural design of hydrogels in medicine and biology.
N. A. Peppas (2000)
10.1016/J.MSEC.2009.09.003
Surface Engineering of Core/Shell Iron/Iron Oxide Nanoparticles from Microemulsions for Hyperthermia.
G. Zhang (2010)
10.1109/TNB.2008.2011857
Numerical Study on the Multi-Region Bio-Heat Equation to Model Magnetic Fluid Hyperthermia (MFH) Using Low Curie Temperature Nanoparticles
Chuanqian Zhang (2008)
10.1021/MA950688D
Anionic Synthesis of Narrow Molecular Weight Distribution Water-Soluble Poly(N,N-dimethylacrylamide) and Poly(N-acryloyl-N ‘-methylpiperazine)
Xiaoyi Xie (1996)
10.1016/J.JMMM.2005.02.023
Synthesis and investigation of magnetic properties of Gd-substituted Mn–Zn ferrite nanoparticles as a potential low-TC agent for magnetic fluid hyperthermia
T. Brusentsova (2005)
10.1088/0953-8984/20/38/385214
Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia.
R. Hergt (2008)
10.1016/J.PROGSOLIDSTCHEM.2009.02.001
Search of new core materials for magnetic fluid hyperthermia: Preliminary chemical and physical issues
E. Pollert (2009)
10.1117/1.1751399
Temperature mapping of laser-induced hyperthermia in an ocular phantom using magnetic resonance thermography.
Saher M. Maswadi (2004)
10.1016/0168-3659(94)00059-4
Evaluation of pilocarpine-loaded albumin particles as controlled drug delivery systems for the eye. II. Co-administration with bioadhesive and viscous polymers
A. Zimmer (1995)
10.1152/AJPCELL.00215.2007
In vivo leukocyte labeling with intravenous ferumoxides/protamine sulfate complex and in vitro characterization for cellular magnetic resonance imaging.
Y. Wu (2007)
10.1504/IJBNN.2010.034651
Synthesis, surface architecture and biological response of superparamagnetic iron oxide nanoparticles for application in drug delivery: a review
M. Mahmoudi (2010)
10.1002/JPS.2600830432
Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice.
T. Yamaoka (1994)
10.1016/J.POLYMER.2006.02.006
Poly(N-isopropylacrylamide) hydrogels with improved shrinking kinetics by RAFT polymerization
Qunfeng Liu (2006)
10.1021/LA0354786
PNIPAM-co-polystyrene core-shell microgels: structure, swelling behavior, and crystallization.
T. Hellweg (2004)
10.1016/0304-8853(93)91113-L
Synthesis and evaluation of colloidal magnetic iron oxides for the site-specific radiofrequency-induced hyperthermia of cancer
D. Chan (1993)
10.1016/0378-5173(94)00389-M
Influence of molecular weight and formulation pH on the precorneal clearance rate of hyaluronic acid in the rabbit eye
A. M. Durrani (1995)
10.1039/B404844J
Biotechnological application of nano-scale engineered bacterial magnetic particles
T. Matsunaga (2004)
10.1007/s00775-008-0445-9
Targeted Herceptin–dextran iron oxide nanoparticles for noninvasive imaging of HER2/neu receptors using MRI
Ting-Jung Chen (2008)
10.1002/PROS.20324
Thermotherapy using magnetic nanoparticles combined with external radiation in an orthotopic rat model of prostate cancer
M. Johannsen (2006)
10.1002/ANIE.200700197
Superparamagnetic magnetite colloidal nanocrystal clusters.
Jianping Ge (2007)
10.1088/0031-9155/49/22/001
Experimental validation of hyperthermia SAR treatment planning using MR B1+ imaging.
C. V. D. van den Berg (2004)
10.1002/ANIE.200400651
Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications.
Eugenii Katz (2004)
10.1148/RADIOLOGY.138.2.7455113
Ferromagnetic embolization. Experimental evaluation.
J. Barry (1981)
10.1016/S0210-4806(07)73703-8
Termoterapia en cáncer de próstata mediante el uso de nanopartículas magnéticas
M. Johannsen (2007)
10.1016/S0169-409X(02)00041-8
Targeted drug delivery by thermally responsive polymers.
A. Chilkoti (2002)
10.1002/anie.200805149
Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles.
Jung-tak Jang (2009)
10.1007/BF02524598
Ferrimagnetic fluids and ferro- and ferrimagnetic suspensions for the RF-induction hyperthermia of tumors
N. A. Brusentsov (2006)
10.1088/0957-4484/20/22/225104
An in vitro study of bare and poly(ethylene glycol)-co-fumarate-coated superparamagnetic iron oxide nanoparticles: a new toxicity identification procedure.
M. Mahmoudi (2009)
Thermotherapy using magnetic nanoparticles
P. Wust (2007)
10.1016/J.JMMM.2005.01.047
Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools
R. Hergt (2005)
10.1252/JCEJ.34.66
Preparation of Tumor-Specific Magnetoliposomes and Their Application for Hyperthermia
B. Le (2001)
10.1021/MA00068A010
Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solution. The influence of relative block size
K. Mortensen (1993)
10.1038/nmat2442
Understanding biophysicochemical interactions at the nano-bio interface.
A. Nel (2009)
10.1039/c0nr00733a
Irreversible changes in protein conformation due to interaction with superparamagnetic iron oxide nanoparticles.
M. Mahmoudi (2011)
10.1002/CMMI.120
A new temperature-sensitive contrast mechanism for MRI: Curie temperature transition-based imaging.
F. Settecase (2007)
10.1109/20.281165
The development of anticancer agent releasing microcapsule made of ferromagnetic amorphous flakes for intratissue hyperthermia
T. Sato (1993)
10.1016/J.JMMM.2009.02.070
Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia
M. Suto (2009)
10.2147/IJN.S2824
Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy
Xiang-hong Peng (2008)
10.1016/j.addr.2009.03.007
Magnetic nanoparticles for theragnostics.
V. Shubayev (2009)
10.1021/CM960077F
Magnetic Properties of Nanostructured Materials
D. Leslie-Pelecky (1996)
10.1016/0146-3535(85)90033-4
Crystal chemistry of magnetic oxides part 2: Hexagonal ferrites
E. Pollert (1985)
10.1021/am100237p
High-frequency, magnetic-field-responsive drug release from magnetic nanoparticle/organic hybrid based on hyperthermic effect.
K. Hayashi (2010)
10.1007/S11051-009-9749-0
Synthesis of magnetic core–shell Fe3O4–Au nanoparticle for biomolecule immobilization and detection
U. Tamer (2010)
10.1021/bc8004683
Development of a dendritic manganese-enhanced magnetic resonance imaging (MEMRI) contrast agent: synthesis, toxicity (in vitro) and relaxivity (in vitro, in vivo) studies.
A. Bertin (2009)
10.1002/1520-6017(200011)89:11<1452::AID-JPS8>3.0.CO;2-P
Design of folic acid-conjugated nanoparticles for drug targeting.
B. Stella (2000)
10.1016/J.EURURO.2006.11.023
Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution.
M. Johannsen (2007)
10.1007/BF03218511
Ring oxpening polymerization of D,L-lactide on magnetite nanoparticles
J. Tian (2006)
10.1029/JB080I029P04049
Theoretical single‐domain grain size range in magnetite and titanomagnetite
R. Butler (1975)
10.1002/POLA.24087
Synthesis and characterization of thermoresponsive poly(ethylene glycol)‐based hydrogels and their magnetic nanocomposites
S. Meenach (2010)
10.1063/1.370030
Domain configurations of nanostructured Permalloy elements
R. D. Gómez (1999)
10.1080/02656730110108785
Magnetically mediated hyperthermia: current status and future directions
P. Moroz (2002)
10.1098/rsta.1948.0007
A mechanism of magnetic hysteresis in heterogeneous alloys
E. C. Stoner (1948)
10.1038/126274A0
Spontaneous and Induced Magnetisation in Ferromagnetic Bodies.
J. Frenkel (1930)
10.1049/iet-nbt.2008.0013
Localised heating of tumours utilising injectable magnetic nanoparticles for hyperthermia cancer therapy.
H. Tseng (2009)
10.1039/c0nr00603c
Superparamagnetic colloidal nanocrystal clusters coated with polyethylene glycol fumarate: a possible novel theranostic agent.
Houshang Amiri (2011)
10.1097/00008390-200304000-00004
Anticancer effect and immune induction by hyperthermia of malignant melanoma using magnetite cationic liposomes
M. Suzuki (2003)
10.1016/J.JMMM.2006.10.1167
ESR study of thermal demagnetization processes in ferromagnetic nanoparticles with Curie temperatures between 40 and 60 C
O. Kuznetsov (2007)
10.1109/20.824418
High K/sub u/ materials approach to 100 Gbits/in/sup 2/
D. Weller (2000)
10.1016/j.colsurfb.2009.08.044
A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles.
M. Mahmoudi (2010)
10.1021/tx800064j
Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes.
H. Karlsson (2008)
10.1021/JA049931R
Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals.
Qing Song (2004)
10.4155/fmc.09.164
Magnetic iron oxide nanoparticles for biomedical applications.
S. Laurent (2010)
10.1007/s11060-010-0389-0
Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme
K. Maier-Hauff (2010)
10.1111/j.1349-7006.1997.tb00429.x
Intracellular Hyperthermia for Cancer Using Magnetite Cationic Liposomes: Ex vivo Study
M. Yanase (1997)
10.1021/ES0518068
Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes.
K. L. Chen (2006)
10.1007/s00249-006-0042-1
Targeting cancer cells: magnetic nanoparticles as drug carriers
C. Alexiou (2006)
10.1021/NL035253F
Synthesis of Fe Oxide Core/Au Shell Nanoparticles by Iterative Hydroxylamine Seeding
Jennifer L. Lyon (2004)
10.1007/s11095-008-9773-2
Magnetothermally-responsive Nanomaterials: Combining Magnetic Nanostructures and Thermally-Sensitive Polymers for Triggered Drug Release
C. Brazel (2008)
10.1007/978-3-642-03895-2_35
Application Potentials of Microwave in NanoMagnetic Particle Hyperthermia
M. Janmaleki (2009)
10.1063/1.1657636
Temperature Dependence of Ms and K1 of BaFe12O19 and SrFe12O19 Single Crystals
B. Shirk (1969)
10.1109/TBME.2007.895111
A Patch Antenna Design for Application in a Phased-Array Head and Neck Hyperthermia Applicator
M. Paulides (2007)
10.1109/20.718537
Physical limits of hyperthermia using magnetite fine particles
R. Hergt (1998)
10.1002/JMRI.1880070629
Uptake of dextran‐coated monocrystalline iron oxides in tumor cells and macrophages
A. Moore (1997)
10.1016/S0304-8853(00)01239-7
Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia
A. Jordan (2001)
10.1021/LA034392+
Dependence of Shell Thickness on Core Compression in Acrylic Acid Modified Poly(N-isopropylacrylamide) Core/Shell Microgels
Clinton D. Jones and (2003)
10.1016/J.EJPB.2007.02.025
Thermoresponsive hydrogels in biomedical applications.
L. Klouda (2008)
10.1039/B402025A
Magnetic nanoparticle design for medical diagnosis and therapy
S. Mornet (2004)
10.3191/THERMALMEDICINE.17.141
Interstitial Hyperthermia Using Magnetite Cationic Liposomes Inhibit to Tumor Growth of VX-7 Transplanted Tumor in Rabbit Tongue
Hideyuki Matsuno (2001)
10.1186/1477-044X-2-3
Hyperthermia using magnetite cationic liposomes for hamster osteosarcoma
Fumiko Matsuoka (2004)
10.1007/BF03246181
Recent advances in surface engineering of superparamagnetic iron oxide nanoparticles for biomedical applications
M. Mahmoudi (2010)
10.1021/JP904884Y
Multiphysics Flow Modeling and in Vitro Toxicity of Iron Oxide Nanoparticles Coated with Poly(vinyl alcohol)
M. Mahmoudi (2009)
10.1177/039139880803100309
Tracking of Primary Human Hepatocytes with Clinical MRI: Initial Results with Tat-Peptide Modified Superparamagnetic Iron Oxide Particles
M. H. Morgul (2008)
10.1002/ANIE.200701992
Highly tunable superparamagnetic colloidal photonic crystals.
Jianping Ge (2007)



This paper is referenced by
10.1080/21691401.2019.1709855
Toxicity assessment of superparamagnetic iron oxide nanoparticles in different tissues.
R. Vakili-Ghartavol (2020)
10.1016/j.bcp.2014.08.015
Pharmacological potential of bioactive engineered nanomaterials.
F. Caputo (2014)
10.1038/srep00868
Cell Type-Specific Activation of AKT and ERK Signaling Pathways by Small Negatively-Charged Magnetic Nanoparticles
Jens Rauch (2012)
10.1007/s11051-014-2521-0
Fe3O4 nanoparticles engineered for plasmid DNA delivery to Escherichia coli
A. A. Saei (2014)
10.1007/s10118-014-1510-1
Cisplatin-loaded polymer/magnetite composite nanoparticles as multifunctional therapeutic nanomedicine
Y. Zhang (2014)
10.1186/s12951-020-0580-1
Size-isolation of superparamagnetic iron oxide nanoparticles improves MRI, MPI and hyperthermia performance
Seyed Mohammadali Dadfar (2020)
10.1039/d0na00343c
Continuously manufactured single-core iron oxide nanoparticles for cancer theranostics as valuable contribution in translational research
R. Bleul (2020)
10.18632/oncotarget.9116
Effective elimination of liver cancer stem-like cells by CD90 antibody targeted thermosensitive magnetoliposomes
R. Yang (2016)
10.1063/1.4954489
Measurement of the nonmagnetic coating thickness of core-shell magnetic nanoparticles by controlled magnetization magnetic force microscopy
L. Angeloni (2016)
10.1016/J.JMMM.2012.02.111
One-step hydrothermal synthesis of highly water-soluble secondary structural Fe3O4 nanoparticles
Xiwen Yang (2012)
10.7150/thno.40298
Combined-therapeutic strategies synergistically potentiate glioblastoma multiforme treatment via nanotechnology
J. Yang (2020)
10.12989/bme.2016.3.3.129
Polymeric nanoparticles as dual-imaging probes for cancer management
Jyothi U Menon (2016)
10.1088/1674-1056/24/12/127505
Novel magnetic vortex nanorings/nanodiscs: Synthesis and theranostic applications*
Liu Xiao-Li (2015)
10.1016/J.JMMM.2014.08.096
Alternating magnetic field energy absorption in the dispersion of iron oxide nanoparticles in a viscous medium
I. Smolkova (2015)
10.1039/C5RA16951H
The mechanistic insight into the biomilling of goethite (α-FeO(OH)) nanorods using the yeast Saccharomyces cerevisiae
Chandrashekhar Sharan (2015)
10.1002/chem.201500944
Magnetically Active Carbon Nanotubes at Work.
Antoine Stopin (2015)
10.3390/molecules23010047
Mesoporous Silica Nanoparticles for Drug Delivery: Current Insights
M. Vallet-Regí (2017)
10.1109/TMAG.2012.2219040
Spatial SPION Localization in Liposome Membranes
C. Bonnaud (2013)
10.1016/J.SOLIDSTATESCIENCES.2019.05.005
Magnetic induction heating properties of Mg1-xZnxFe2O4 ferrites synthesized by co-precipitation method
Liu Huiying (2019)
10.1016/j.jddst.2020.101563
Synthesis of PLGA–mPEG star-like block copolymer to form micelle loaded magnetite as a nanocarrier for hydrophobic anticancer drug
Mohsen Ashjari (2020)
10.1021/acschemneuro.8b00127
Drug-Abuse Nanotechnology: Opportunities and Challenges.
M. Mahmoudi (2018)
10.18821/0016-9900-2019-98-10-1161-1165
EVALUATION OF TOXIC EFFECTS OF MAGNETIC CONTRAST DIAGNOSTIC GADOLINIUM-CONTAINING NANOCOMPOSITE
L. M. Sosedova (2019)
10.1016/j.ijpharm.2016.09.006
Grafting of allylimidazole and n-vinylcaprolactam as a thermosensitive polymer onto magnetic nano-particles for the extraction and determination of celecoxib in biological samples.
Atefeh Morovati (2016)
10.1088/1361-6463/AA7BCB
Heat generation of surface-modified magnetic γ-Fe2O3 nanoparticles in applied alternating magnetic field
M. Babič (2017)
10.2217/nnm-2016-0050
Peptide conjugated magnetic nanoparticles for magnetically mediated energy delivery to lung cancer cells.
Anastasia K. Hauser (2016)
10.1016/J.JMMM.2016.02.076
A simple way to obtain high saturation magnetization for superparamagnetic iron oxide nanoparticles synthesized in air atmosphere: Optimization by experimental design
O. Karaagac (2016)
10.1016/j.ijpharm.2016.05.046
Doxorubicin loaded large-pore mesoporous hydroxyapatite coated superparamagnetic Fe3O4 nanoparticles for cancer treatment.
Negar Abbasi Aval (2016)
10.1021/bm301703x
Injectable superparamagnets: highly elastic and degradable poly(N-isopropylacrylamide)-superparamagnetic iron oxide nanoparticle (SPION) composite hydrogels.
Scott B. Campbell (2013)
10.1155/2012/454759
Effect of tetramethylammonium hydroxide on nucleation, surface modification and growth of magnetic nanoparticles
Â. Andrade (2012)
10.1371/journal.pone.0057332
Design Maps for the Hyperthermic Treatment of Tumors with Superparamagnetic Nanoparticles
Antonio Cervadoro (2013)
10.1021/cr3002627
Big signals from small particles: regulation of cell signaling pathways by nanoparticles.
Jens Rauch (2013)
10.2217/nnm.15.130
Nanotoxicology: advances and pitfalls in research methodology.
M. Azhdarzadeh (2015)
See more
Semantic Scholar Logo Some data provided by SemanticScholar