Online citations, reference lists, and bibliographies.
← Back to Search

Design Principles Of Ocular Drug Delivery Systems: Importance Of Drug Payload, Release Rate, And Material Properties.

Astrid Subrizi, Eva M. del Amo, V. Korzhikov-Vlakh, T. Tennikova, M. Ruponen, A. Urtti
Published 2019 · Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
Ocular drugs are usually delivered locally to the eye. Required drug loading, release rate, and ocular retention time of drug delivery systems depend on the potency, bioavailability, and clearance of the drug at the target site. Drug-loading capacity of the formulation is limited by the material properties and size constraints of the eye. The design aid described herein for ocular drug delivery systems guides the calculation of steady-state drug concentrations in the ocular compartments, taking into account drug dose, bioavailability, and clearance. The dosing rate can be adjusted to reach the target drug concentrations, thereby guiding the design of drug delivery systems for topical, intravitreal, and subconjunctival administration. The simple design aid can be used at early stages of drug development by investigators without expertise in pharmacokinetic and pharmacodynamic modeling.
This paper references
10.1002/JPS.20625
BSA degradation under acidic conditions: a model for protein instability during release from PLGA delivery systems.
Tia Estey (2006)
10.1167/IOVS.05-0165
Vitreous: a barrier to nonviral ocular gene therapy.
L. Peeters (2005)
10.1016/0378-5173(87)90092-5
Disposition of timolol and inulin in the rabbit eye following corneal versus non-corneal absorption
I. Ahmed (1987)
10.1016/J.ADDR.2006.07.027
Challenges and obstacles of ocular pharmacokinetics and drug delivery.
A. Urtti (2006)
10.1016/j.ejpb.2015.02.032
Undefined role of mucus as a barrier in ocular drug delivery.
M. Ruponen (2015)
10.1111/aos.13451
Differential expression and localization of human tissue inhibitors of metalloproteinases in proliferative diabetic retinopathy
A. A. Abu El-Asrar (2018)
10.2217/nnm.12.202
Measuring the intravitreal mobility of nanomedicines with single-particle tracking microscopy.
Thomas F. Martens (2013)
10.1002/JPS.2600660905
Vehicle effects on ocular drug bioavailability II: Evaluation of pilocarpine.
J. Sieg (1977)
10.1002/JPS.2600620712
Lacrimal and instilled fluid dynamics in rabbit eyes.
S. Chrai (1973)
10.1111/J.1755-3768.2016.0376
Toward rational design of gene carriers: a novel ex vivo model to study the vitreoretinal interface as a barrier
K. Peynshaert (2016)
10.1517/13543784.2012.681043
Matrix metalloproteinases in diabetic retinopathy: potential role of MMP-9
R. Kowluru (2012)
10.1007/s11095-010-0132-8
Prediction of the Corneal Permeability of Drug-Like Compounds
Heidi Kidron (2010)
10.1097/IAE.0b013e3180592c00
CORRELATION OF THE EXTENT AND DURATION OF RHEGMATOGENOUS RETINAL DETACHMENT WITH THE EXPRESSION OF MATRIX METALLOPROTEINASES IN THE VITREOUS
C. Symeonidis (2007)
10.1016/0378-5173(90)90215-P
Controlled drug delivery devices for experimental ocular studies with timolol 2. Ocular and systemic absorption in rabbits
A. Urtti (1990)
10.1021/JS9802594
Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye.
M. Prausnitz (1998)
10.2147/IJN.S135133
Apatinib-loaded nanoparticles suppress vascular endothelial growth factor-induced angiogenesis and experimental corneal neovascularization
J. Lee (2017)
10.1002/mabi.201400250
A combined micelle and poly(serinol hexamethylene urea)-co-poly(N-isopropylacrylamide) reverse thermal gel as an injectable ocular drug delivery system.
A. Famili (2014)
10.1007/s11095-016-1993-2
General Pharmacokinetic Model for Topically Administered Ocular Drug Dosage Forms
Feng Deng (2016)
10.1021/acs.molpharmaceut.8b00038
Binding of Small Molecule Drugs to Porcine Vitreous Humor.
A. Rimpelä (2018)
Sustained Release Intraocular Drug Delivery Devices for Treatment of Uveitis
N. Haghjou (2011)
10.1016/S0002-9394(14)77735-9
Penetration routes of topically applied eye medications.
M. Doane (1978)
10.1111/J.1748-1716.1979.TB06421.X
Capillary permeability in cat choroid, studied with the single injection technique (II).
P. Törnquist (1979)
10.1021/acs.molpharmaceut.8b00280
Theoretical Insights into the Retinal Dynamics of Vascular Endothelial Growth Factor in Patients Treated with Ranibizumab, Based on an Ocular Pharmacokinetic/Pharmacodynamic Model.
Laurence A. Hutton-Smith (2018)
10.1016/j.ejpb.2015.01.003
Intravitreal clearance and volume of distribution of compounds in rabbits: In silico prediction and pharmacokinetic simulations for drug development.
Eva M. del Amo (2015)
10.1016/0002-9394(75)90145-2
Comparative distribution of pilocarpine in ocular tissues of the rabbit during administration by eyedrop or by membrane-controlled delivery systems.
L. Seńdelbeck (1975)
10.1167/iovs.07-0593
Modeling of corneal and retinal pharmacokinetics after periocular drug administration.
A. Amrite (2008)
10.1167/IOVS.02-1068
Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles.
Jean-Louis Bourges (2003)
10.1002/JPS.2600651123
Effect of topically applied pilocarpine on tear film pH.
A. Longwell (1976)
10.3109/02713688809031801
Comparison of conjunctival and corneal surface areas in rabbit and human.
M. Watsky (1988)
10.1016/j.ijpharm.2015.05.071
An injectable thermosensitive polymeric hydrogel for sustained release of Avastin® to treat posterior segment disease.
B. Xie (2015)
10.3109/10837450.2013.871034
Comparative studies for ciprofloxacin hydrochloride pre-formed gels and thermally triggered (in situ) gels: in vitro and in vivo appraisal using a bacterial keratitis model in rabbits
H. Abdelkader (2015)
10.1016/j.jconrel.2013.01.018
Nanoparticle diffusion in, and microrheology of, the bovine vitreous ex vivo.
Qingguo Xu (2013)
10.1016/S0378-5173(02)00234-X
In vitro and in vivo evaluation of Pluronic F127-based ocular delivery system for timolol maleate.
A. El-Kamel (2002)
10.1016/j.ejps.2018.03.034
Corneal and conjunctival drug permeability: Systematic comparison and pharmacokinetic impact in the eye
Eva Ramsay (2018)
10.1016/S0142-9612(01)00284-8
Ocular disposition and tolerance of ganciclovir-loaded albumin nanoparticles after intravitreal injection in rats.
M. Merodio (2002)
10.1002/JPS.2600721109
Corneal penetration behavior of beta-blocking agents II: Assessment of barrier contributions.
H. Huang (1983)
10.1021/nn4046024
Sustained drug release in nanomedicine: a long-acting nanocarrier-based formulation for glaucoma.
Jayaganesh V. Natarajan (2014)
10.1167/iovs.10-5285
Pharmacokinetics and pharmacodynamics of a sustained-release dexamethasone intravitreal implant.
Joan-en Chang-lin (2011)
10.2147/IJN.S162306
Montmorillonite/chitosan nanoparticles as a novel controlled-release topical ophthalmic delivery system for the treatment of glaucoma
J. Li (2018)
Safety and pharmacokinetics of an intraocular fluocinolone acetonide sustained delivery device.
G. Jaffe (2000)
10.1016/j.ajo.2011.05.015
A video study of drop instillation in both glaucoma and retina patients with visual impairment.
Amy L. Hennessy (2011)
10.1016/j.addr.2017.12.009
Expression, activity and pharmacokinetic impact of ocular transporters☆
Kati-Sisko Vellonen (2018)
10.1211/jpp.57.12.0005
Size‐dependent disposition of nanoparticles and microparticles following subconjunctival administration
A. Amrite (2005)
10.1016/j.actbio.2014.05.031
Sustained delivery of latanoprost by thermosensitive chitosan-gelatin-based hydrogel for controlling ocular hypertension.
Yung-Hsin Cheng (2014)
The long-acting Ocusert-pilocarpine system in the management of glaucoma.
P. Lee (1975)
10.1016/J.JSSC.2018.08.036
Amine-grafted SBA-15 for ophthalmic delivery of dexamethasone
Se Na Kim (2018)
10.1097/IAE.0000000000002279
SUPRACHOROIDAL INJECTION OF TRIAMCINOLONE ACETONIDE, CLS-TA, FOR MACULAR EDEMA DUE TO NONINFECTIOUS UVEITIS: A Randomized, Phase 2 Study (DOGWOOD).
S. Yeh (2018)
10.1208/aapsj060325
Neural retina limits the nonviral gene transfer to retinal pigment epithelium in an in vitro bovine eye model
L. Pitkänen (2008)
10.1007/s12038-017-9677-6
Enhanced delivery of biodegradable mPEG-PLGA-PLL nanoparticles loading Cy3-labelled PDGF-BB siRNA by UTMD to rat retina
J. Du (2017)
10.1023/A:1022207026982
Computer Simulation of Convective and Diffusive Transport of Controlled-Release Drugs in the Vitreous Humor
M. Stay (2004)
10.1016/J.EJPB.2004.12.007
Roles of the conjunctiva in ocular drug delivery: a review of conjunctival transport mechanisms and their regulation.
K. Hosoya (2005)
10.1038/eye.2008.21
Adult vitreous structure and postnatal changes
M. L. Goff (2008)
10.1002/JPS.21124
Effect of structural relaxation on the preparation and drug release behavior of poly(lactic-co-glycolic)acid microparticle drug delivery systems.
S. Allison (2008)
10.1089/jop.2014.0082
Comparison of the release profile and pharmacokinetics of intact and fragmented dexamethasone intravitreal implants in rabbit eyes.
R. Bhagat (2014)
10.1016/j.biopha.2017.07.110
Poly (d, l-lactide-co-glycolide) nanoparticles for sustained release of tacrolimus in rabbit eyes.
M. A. Kalam (2017)
10.1002/JPS.2600690544
Pilocarpine ocular distribution volume.
S. Miller (1980)
10.1167/IOVS.04-1051
Permeability of retinal pigment epithelium: effects of permeant molecular weight and lipophilicity.
L. Pitkänen (2005)
10.1021/acs.biomac.5b01526
Fabrication of a Micellar Supramolecular Hydrogel for Ocular Drug Delivery.
Zhaoliang Zhang (2016)
10.1080/17435390.2016.1181808
Poly(ortho ester) nanoparticles targeted for chronic intraocular diseases: ocular safety and localization after intravitreal injection
H. Li (2016)
10.1089/108076801753162807
Review: practical issues in intravitreal drug delivery.
D. Maurice (2001)
10.1021/acs.molpharmaceut.5b00849
A Mechanistic Model of the Intravitreal Pharmacokinetics of Large Molecules and the Pharmacodynamic Suppression of Ocular Vascular Endothelial Growth Factor Levels by Ranibizumab in Patients with Neovascular Age-Related Macular Degeneration.
Laurence A. Hutton-Smith (2016)
10.1016/j.ejps.2018.03.023
Effects of enzymatic degradation on dynamic mechanical properties of the vitreous and intravitreal nanoparticle mobility
Di Huang (2018)
10.1080/10717544.2018.1458923
Improving the topical ocular pharmacokinetics of lyophilized cyclosporine A-loaded micelles: formulation, in vitro and in vivo studies
Yinglan Yu (2018)
10.1081/DDC-120016729
Ophthalmic Delivery of Ciprofloxacin Hydrochloride from Different Polymer Formulations: In Vitro and In Vivo Studies
Naseem A Charoo (2003)
10.1371/journal.pone.0029692
Scleral Thickness in Human Eyes
Sujiv Vurgese (2012)
10.1007/978-1-4615-2417-5_51
Analysis and function of the human tear proteins.
A. Kijlstra (1994)
10.1016/j.actbio.2015.05.005
Sustained intravitreal delivery of dexamethasone using an injectable and biodegradable thermogel.
L. Zhang (2015)
10.1016/j.ophtha.2016.07.033
Associations with Retinal Pigment Epithelium Thickness Measures in a Large Cohort: Results from the UK Biobank.
Fang Ko (2017)
10.1016/j.ejps.2018.07.034
Esterase activity in porcine and albino rabbit ocular tissues
Emma M Heikkinen (2018)
10.3129/I08-076
Multicenter study of compliance and drop administration in glaucoma.
Ramin Kholdebarin (2008)
10.1016/j.jconrel.2015.01.009
Corticosteroid-loaded biodegradable nanoparticles for prevention of corneal allograft rejection in rats.
Q. Pan (2015)
10.1016/J.ADDR.2005.07.005
The use of mucoadhesive polymers in ocular drug delivery.
A. Ludwig (2005)
10.1002/JPS.2600700915
Mechanistic studies on transcorneal permeation of fluorometholone.
J. Sieg (1981)
10.1016/0378-5173(89)90305-0
Gelrite®: A novel, ion-activated, in-situ gelling polymer for ophthalmic vehicles. Effect on bioavailability of timolol
A. Rozier (1989)
10.1089/jop.2010.0158
Comparison of long-acting bevacizumab formulations in the treatment of choroidal neovascularization in a rat model.
C. K. Pan (2011)
10.1167/IOVS.02-1027
Human retinal molecular weight exclusion limit and estimate of species variation.
T. Jackson (2003)
10.1016/0039-6257(85)90109-2
Ocular drug bioavailability from topically applied liposomes.
V. H. Lee (1985)
Demonstration of the mucous layer of the tear film by electron microscopy.
B. Nichols (1985)
10.1001/ARCHOPHT.1992.01080140111037
Intravitreal sustained-release ganciclovir.
T. J. Smith (1992)
10.2147/IJN.S25468
Nanomedicine for glaucoma: liposomes provide sustained release of latanoprost in the eye
Jayaganesh V. Natarajan (2012)
10.1089/108076804772745455
Drug delivery to the posterior segment of the eye II: development and validation of a simple pharmacokinetic model for subconjunctival injection.
T. W. Lee (2004)
10.1016/0014-4835(80)90091-3
Age-related changes in the vitreus and lens of rhesus monkeys (Macaca mulatta).
J. Denlinger (1980)
10.1016/j.preteyeres.2016.12.001
Pharmacokinetic aspects of retinal drug delivery
E. Amo (2017)
10.1007/s11095-006-9748-0
Oligonucleotide-Polyethylenimine Complexes Targeting Retinal Cells: Structural Analysis and Application to Anti-TGFβ-2 Therapy
A. L. Gomes dos Santos (2006)
10.1038/nrd3745
Ophthalmic drug discovery: novel targets and mechanisms for retinal diseases and glaucoma
K. Zhang (2012)
10.1016/S1350-9462(99)00016-6
Structural macromolecules and supramolecular organisation of the vitreous gel
P. Bishop (2000)
10.1007/s00417-015-3007-1
Biodegradable chitosan and polylactic acid-based intraocular micro-implant for sustained release of methotrexate into vitreous: analysis of pharmacokinetics and toxicity in rabbit eyes
S. Manna (2015)
Paracellular permeability of corneal and conjunctival epithelia.
A. Huang (1989)
Importance of the noncorneal absorption route in topical ophthalmic drug delivery.
I. Ahmed (1985)
10.1016/j.ejpb.2017.12.019
Antibody loaded collapsible hyaluronic acid hydrogels for intraocular delivery
Raphael Egbu (2018)
10.1016/S0039-6257(02)00302-8
Ocular and systemic pharmacokinetics of latanoprost in humans.
B. Sjöquist (2002)
10.1023/A:1012123411343
Polar Solute Transport Across the Pigmented Rabbit Conjunctiva: Size Dependence and the Influence of 8-Bromo Cyclic Adenosine Monophosphate
Y. Horibe (2004)
10.1016/j.jconrel.2017.02.013
Differentially cleaving peptides as a strategy for controlled drug release in human retinal pigment epithelial cells
M. Bhattacharya (2017)
10.1016/j.jconrel.2010.08.028
Barrier analysis of periocular drug delivery to the posterior segment.
V. Ranta (2010)
10.1002/jbm.a.31769
In situ formation of hydrogels as vitreous substitutes: Viscoelastic comparison to porcine vitreous.
K. E. Swindle (2008)
10.1007/s13346-014-0196-9
Nanomedicine for glaucoma: sustained release latanoprost offers a new therapeutic option with substantial benefits over eyedrops
T. Wong (2014)
Characterization of paracellular and aqueous penetration routes in cornea, conjunctiva, and sclera.
K. M. Hämäläinen (1997)
10.1016/J.ADDR.2006.07.025
Transscleral drug delivery to the posterior eye: prospects of pharmacokinetic modeling.
V. Ranta (2006)
10.1615/CRITREVTHERDRUGCARRIERSYST.V21.I5.10
Modeling of drug release from polymeric delivery systems--a review.
Deenu Kanjickal (2004)
10.1016/j.jconrel.2015.05.279
Novel biodegradable polyesteramide microspheres for controlled drug delivery in Ophthalmology.
V. Andrés-Guerrero (2015)
10.1016/j.ijpharm.2017.02.047
Sustained release ophthalmic dexamethasone: In vitro in vivo correlations derived from the PK-Eye.
S. Awwad (2017)
10.1016/j.ejpb.2016.10.015
Topical ophthalmic lipid nanoparticle formulations (SLN, NLC) of indomethacin for delivery to the posterior segment ocular tissues.
Sai Prachetan Balguri (2016)
10.1080/10717544.2017.1375578
Toward smart design of retinal drug carriers: a novel bovine retinal explant model to study the barrier role of the vitreoretinal interface
K. Peynshaert (2017)
10.1016/0014-4835(91)90125-X
The loss of fluorescein, fluorescein glucuronide and fluorescein isothiocyanate dextran from the vitreous by the anterior and retinal pathways.
M. Araie (1991)
10.1016/0378-5173(85)90005-5
Systemic absorption of ocular pilocarpine is modified by polymer matrices
A. Urtti (1985)
10.1089/jop.2014.0100
Ocular pharmacokinetics of fluocinolone acetonide following Iluvien implantation in the vitreous humor of rabbits.
F. Kane (2015)
10.7326/0003-4819-95-4-533_3
Clinical pharmacokinetics : concepts and applications
M. Rowland (1989)
10.1023/A:1018938310628
Controlled Ocular Timolol Delivery: Systemic Absorption and Intraocular Pressure Effects in Humans
A. Urtti (2004)
10.1007/s11095-004-7669-3
Assessment of Subconjunctival Delivery with Model Ionic Permeants and Magnetic Resonance Imaging
S. Li (2004)
10.1002/jgm.1011
Corneal epithelium as a platform for secretion of transgene products after transfection with liposomal gene eyedrops
E. Toropainen (2007)
10.1089/jop.2014.0067
Pharmacotherapy of glaucoma.
D. Schmidl (2015)
10.1002/JPS.2600660222
Aqueous chamber drug distribution volume measurement in rabbits.
J. M. Conrad (1977)
10.1167/iovs.10-5891
A lipid nanoparticle system improves siRNA efficacy in RPE cells and a laser-induced murine CNV model.
Hong-an Liu (2011)
10.1002/JPS.2600690806
Mechanisms of anterior segment absorption of pilocarpine following subconjunctival injection in albino rabbits.
J. M. Conrad (1980)
10.1002/JPS.2600690407
Effect of particle size on ophthalmic bioavailability of dexamethasone suspensions in rabbits.
R. Schoenwald (1980)
10.1016/j.actbio.2015.09.020
Encapsulation of PEGylated low-molecular-weight PEI polyplexes in hyaluronic acid hydrogels reduces aggregation.
Shayne N Siegman (2015)



This paper is referenced by
Teaser Hydrogels providing sustained delivery of biologics to the back of the eye can make a significant impact in the treatment of many ocular diseases
Debby Chang (2019)
10.1111/fcp.12561
Progress on Ocular siRNA Gene Silencing Therapy and Drug Delivery Systems.
Jinjin Jiang (2020)
Razvoj oftalmičkih nanoemulzija sa stearilaminom
Ana Bračko (2019)
Novel approaches for ocular drug delivery: A review
A. Singh (2019)
10.1002/ADTP.202000138
HDL Nanoparticles Have Wound Healing and Anti‐Inflammatory Properties and Can Topically Deliver miRNAs
J. Wang (2020)
10.1089/jop.2020.0022
Mucus-Penetrating Particles and the Role of Ocular Mucus as a Barrier to Micro- and Nanosuspensions
A. Popov (2020)
10.1002/adfm.201908476
Material, Immunological, and Practical Perspectives on Eye Drop Formulation
Naomi H. Bennett (2020)
10.1016/j.ijpharm.2019.118979
Functional ibuprofen-loaded cationic nanoemulsion: development and optimization for dry eye disease treatment.
Bisera Jurišić Dukovski (2019)
10.1016/j.omtn.2019.07.017
Effective In Vivo Topical Delivery of siRNA and Gene Silencing in Intact Corneal Epithelium Using a Modified Cell-Penetrating Peptide
D. Schiroli (2019)
10.1167/tvst.9.3.30
Safety and Biocompatibility of Aflibercept-Loaded Microsphere Thermo-Responsive Hydrogel Drug Delivery System in a Nonhuman Primate Model
Soohyun Kim (2020)
10.3390/pharmaceutics12010022
Polysaccharides in Ocular Drug Delivery
N. Dubashynskaya (2019)
10.3390/pharmaceutics12080706
Fasudil Loaded PLGA Microspheres as Potential Intravitreal Depot Formulation for Glaucoma Therapy
Raphael Mietzner (2020)
10.3390/pharmaceutics12100954
Effective Dispensing Methods for Loading Drugs Only to the Tip of DNA Microneedles
M. Bok (2020)
10.1016/j.ijpharm.2020.119895
Formulation of nanoliposome-encapsulated bevacizumab (Avastin): Statistical optimization for enhanced drug encapsulation and properties evaluation.
Maryam Malakouti-Nejad (2020)
10.30476/TIPS.2020.87659.1064
Optimization parameters to prepare chitosan nanoparticles containing sulfacetamide sodium
Zahra Sobhani (2020)
10.1016/j.ijpharm.2019.118767
Intravitreal anti-VEGF drug delivery systems for age-related macular degeneration.
Andrea Luaces-Rodríguez (2019)
10.3390/nano10061191
Niosomal Drug Delivery Systems for Ocular Disease—Recent Advances and Future Prospects
Saliha Durak (2020)
10.1080/1061186X.2020.1803886
Injectable in-situ gel depot system for targeted delivery of biologics to the retina.
Rohit Bisht (2020)
10.3390/polym11081371
Advances in Biodegradable Nano-Sized Polymer-Based Ocular Drug Delivery
Courtney R. H. Lynch (2019)
10.1016/j.msec.2020.111445
Cross-linked thermosensitive nanohydrogels for ocular drug delivery with a prolonged residence time and enhanced bioavailability
Y. Wen (2021)
10.3390/nano10040709
In Vitro and Ex Vivo Evaluation of Nepafenac-Based Cyclodextrin Microparticles for Treatment of Eye Inflammation
B. Lorenzo-Veiga (2020)
10.1016/j.ejps.2020.105553
Topical ocular pharmacokinetics and bioavailability for a cocktail of atenolol, timolol and betaxolol in rabbits.
Anam Fayyaz (2020)
10.7399/FH.11388
Nuevos sistemas de liberación de fármacos a nivel ocular
Ana Castro-Balado (2020)
10.1016/j.drudis.2019.05.037
Hydrogels for sustained delivery of biologics to the back of the eye.
Debby P Chang (2019)
Semantic Scholar Logo Some data provided by SemanticScholar