Online citations, reference lists, and bibliographies.
← Back to Search

Drug Delivery To Retinal Photoreceptors

E. Himawan, P. Ekström, M. Buzgo, P. Gaillard, E. Stefánsson, V. Marigo, T. Loftsson, François Paquet-Durand
Published 2019 · Medicine, Biology

Cite This
Download PDF
Analyze on Scholarcy
Share
Highlights • Routes of administration to retinal photoreceptors.• The blood–retinal barrier as a challenge for photoreceptor drug delivery.• Review of nanoparticle drug delivery systems used for intraocular applications.• Perspectives for topical drug delivery to the retina.
This paper references
10.3109/08982104.2014.881850
Preparation, characterization and evaluation of novel elastic nano-sized niosomes (ethoniosomes) for ocular delivery of prednisolone
Passent M E Gaafar (2014)
10.1016/j.preteyeres.2017.09.003
Manipulating ocular endothelial tight junctions: Applications in treatment of retinal disease pathology and ocular hypertension
M. Campbell (2018)
10.1016/j.jconrel.2012.01.019
Liposomes for intravitreal drug delivery: a state of the art.
A. Bochot (2012)
10.1007/s11095-008-9745-6
Investigating the Movement of Intravitreal Human Serum Albumin Nanoparticles in the Vitreous and Retina
Hyuncheol Kim (2008)
10.1007/s11095-018-2519-x
Topical Drug Delivery to the Posterior Segment of the Eye: Addressing the Challenge of Preclinical to Clinical Translation
G. Rodrigues (2018)
10.1088/0957-4484/25/27/275103
Two cholesterol derivative-based PEGylated liposomes as drug delivery system, study on pharmacokinetics and drug delivery to retina.
Sheng-Yong Geng (2014)
10.1136/bjophthalmol-2015-307707
Incidence and clinical features of post-injection endophthalmitis according to diagnosis
Nadim Rayess (2015)
10.1016/j.ejpb.2016.10.006
Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: Pharmacokinetic studies on rabbits.
P. Chetoni (2016)
10.1016/J.JDDST.2018.04.007
Topical drug delivery to the posterior segment of the eye: Dexamethasone concentrations in various eye tissues after topical administration for up to 15 days to rabbits
Sunna Jóhannsdóttir (2018)
10.1517/17425247.2010.490554
Systemic delivery of therapeutics to neuronal tissues: a barrier modulation approach
Matthew Campbell (2010)
10.1016/j.jconrel.2013.11.004
A novel cationic niosome formulation for gene delivery to the retina.
G. Puras (2014)
10.1126/sciadv.1500472
Autoregulated paracellular clearance of amyloid-β across the blood-brain barrier
J. Keaney (2015)
10.1016/j.biomaterials.2012.01.030
The movement of self-assembled amphiphilic polymeric nanoparticles in the vitreous and retina after intravitreal injection.
Heebeom Koo (2012)
10.1016/j.ijpharm.2017.04.010
Cyclodextrins and topical drug delivery to the anterior and posterior segments of the eye.
T. Loftsson (2017)
10.1016/j.ajo.2017.05.016
Physical Activity and Age-related Macular Degeneration: A Systematic Literature Review and Meta-analysis.
Myra B. McGuinness (2017)
10.1080/09286586.2017.1281426
The Economic Impact of Blindness in Europe
U. Chakravarthy (2017)
10.1007/978-1-62703-080-9_26
Barrier modulation in drug delivery to the retina.
M. Campbell (2013)
10.7150/thno.15230
Cell-Specific Promoters Enable Lipid-Based Nanoparticles to Deliver Genes to Specific Cells of the Retina In Vivo
Yuhong Wang (2016)
10.1097/IAE.0000000000002279
SUPRACHOROIDAL INJECTION OF TRIAMCINOLONE ACETONIDE, CLS-TA, FOR MACULAR EDEMA DUE TO NONINFECTIOUS UVEITIS: A Randomized, Phase 2 Study (DOGWOOD).
S. Yeh (2018)
10.1002/emmm.201100126
Systemic low-molecular weight drug delivery to pre-selected neuronal regions
M. Campbell (2011)
10.1111/aos.12803
Topical dexamethasone γ‐cyclodextrin nanoparticle eye drops increase visual acuity and decrease macular thickness in diabetic macular oedema
A. Ohira (2015)
Spare the rods, save the cones in aging and age-related maculopathy.
C. Curcio (2000)
10.1002/jps.23994
Enhanced doxorubicin delivery to the brain administered through glutathione PEGylated liposomal doxorubicin (2B3-101) as compared with generic Caelyx,(®)/Doxil(®)--a cerebral open flow microperfusion pilot study.
T. Birngruber (2014)
10.1167/iovs.13-13599
Systemic treatment with glutathione PEGylated liposomal methylprednisolone (2B3-201) improves therapeutic efficacy in a model of ocular inflammation.
A. Reijerkerk (2014)
10.2174/156652412800620048
Neuroprotective strategies for the treatment of inherited photoreceptor degeneration.
D. Trifunović (2012)
10.1016/j.bbrc.2015.04.088
Effective delivery of recombinant proteins to rod photoreceptors via lipid nanovesicles.
S. Asteriti (2015)
10.1073/pnas.1718792115
Combination of cGMP analogue and drug delivery system provides functional protection in hereditary retinal degeneration
E. Vighi (2018)
10.1511/2003.11.841
How the Retina Works
H. Kolb (2003)
10.1167/iovs.17-22402
Subretinal Injection for Gene Therapy Does Not Cause Clinically Significant Outer Nuclear Layer Thinning in Normal Primate Foveae.
G. A. Ochakovski (2017)
10.1016/j.biomaterials.2016.03.004
Structural recovery of the retina in a retinoschisin-deficient mouse after gene replacement therapy by solid lipid nanoparticles.
P. S. Apaolaza (2016)
10.1021/nl502275s
Nanoparticle-Assisted Targeted Delivery of Eye-Specific Genes to Eyes Significantly Improves the Vision of Blind Mice In Vivo
Ammaji Rajala (2014)
10.1016/j.jconrel.2015.01.001
Light-responsive nanoparticle depot to control release of a small molecule angiogenesis inhibitor in the posterior segment of the eye.
V. N. Huu (2015)
10.1016/j.ddtec.2016.09.003
Glutathione conjugation dose-dependently increases brain-specific liposomal drug delivery in vitro and in vivo.
D. Maussang (2016)
10.1021/nn305958y
Targeted intraceptor nanoparticle therapy reduces angiogenesis and fibrosis in primate and murine macular degeneration.
L. Luo (2013)
10.1167/IOVS.05-0165
Vitreous: a barrier to nonviral ocular gene therapy.
L. Peeters (2005)
10.1371/journal.pone.0016733
Nanoceria Inhibit the Development and Promote the Regression of Pathologic Retinal Neovascularization in the Vldlr Knockout Mouse
X. Zhou (2011)
10.1371/journal.pone.0000038
Efficient Non-Viral Ocular Gene Transfer with Compacted DNA Nanoparticles
R. Farjo (2006)
10.1016/j.ijpharm.2017.02.035
Enhanced ocular efficacy of topically-delivered dorzolamide with nanostructured mucoadhesive microparticles.
C. Park (2017)
10.1159/000431143
Routes for Drug Delivery to the Eye and Retina: Intravitreal Injections.
C. Meyer (2016)
10.1007/978-3-319-41129-3_2
Nanoparticles Types, Classification, Characterization, Fabrication Methods and Drug Delivery Applications
Saurabh Bhatia (2016)
10.1016/0163-7258(89)90049-1
The pharmacology of antiglaucoma drugs.
M. F. Sugrue (1989)
10.3389/fncel.2016.00020
Brain and Retinal Pericytes: Origin, Function and Role
A. Trost (2016)
10.1016/J.ADDR.2005.09.004
Topical and systemic drug delivery to the posterior segments.
Patrick M Hughes (2005)
10.1016/J.TIG.2004.12.001
Light in retinitis pigmentosa.
A. Kennan (2005)
10.14573/altex.1603111
Organotypic retinal explant cultures as in vitro alternative for diabetic retinopathy studies.
Joaquín Valdés (2016)
10.1021/ja102595j
UV and near-IR triggered release from polymeric nanoparticles.
N. Fomina (2010)
10.1016/j.jconrel.2013.01.004
Specific uptake of folate-decorated triamcinolone-encapsulating nanoparticles by retinal pigment epithelium cells enhances and prolongs antiangiogenic activity.
Wai-Leung Langston Suen (2013)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar