Online citations, reference lists, and bibliographies.
← Back to Search

Solid Lipid Nanoparticles (SLN) And Nanostructured Lipid Carriers (NLC) For Pulmonary Application: A Review Of The State Of The Art.

S. Weber, A. Zimmer, J. Pardeike
Published 2014 · Chemistry, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
Drug delivery by inhalation is a noninvasive means of administration that has following advantages for local treatment for airway diseases: reaching the epithelium directly, circumventing first pass metabolism and avoiding systemic toxicity. Moreover, from the physiological point of view, the lung provides advantages for systemic delivery of drugs including its large surface area, a thin alveolar epithelium and extensive vasculature which allow rapid and effective drug absorption. Therefore, pulmonary application is considered frequently for both, the local and the systemic delivery of drugs. Lipid nanoparticles - Solid Lipid Nanoparticles and Nanostructured Lipid Carriers - are nanosized carrier systems in which solid particles consisting of a lipid matrix are stabilized by surfactants in an aqueous phase. Advantages of lipid nanoparticles for the pulmonary application are the possibility of a deep lung deposition as they can be incorporated into respirables carriers due to their small size, prolonged release and low toxicity. This paper will give an overview of the existing literature about lipid nanoparticles for pulmonary application. Moreover, it will provide the reader with some background information for pulmonary drug delivery, i.e., anatomy and physiology of the respiratory system, formulation requirements, application forms, clearance from the lung, pharmacological benefits and nanotoxicity.
This paper references
10.1016/S0378-5173(02)00526-4
Characterization of inhalation aerosols: a critical evaluation of cascade impactor analysis and laser diffraction technique.
A. D. de boer (2002)
10.1016/0041-008X(92)90014-J
Effects of fine and ultrafine sulfuric acid aerosols in guinea pigs: alterations in alveolar macrophage function and intracellular pH.
L. Chen (1992)
Deposition
M. Lippmann (1980)
10.1016/0378-5173(96)04449-3
Nebulisation of monodisperse latex sphere suspensions in air-jet and ultrasonic nebulisers
Orla N.M. Mc Callion (1996)
10.1023/B:PHAM.0000041463.56768.ec
Application of Novel Solid Lipid Nanoparticle (SLN)-Gene Vector Formulations Based on a Dimeric HIV-1 TAT-Peptide in Vitro and in Vivo
C. Rudolph (2004)
10.1016/j.jaci.2009.09.050
Particle size of inhaled corticosteroids: does it matter?
C. Leach (2009)
10.1155/2011/163791
Evaluating the controlled release properties of inhaled nanoparticles using isolated, perfused, and ventilated lung models
M. Beck-Broichsitter (2011)
10.1016/j.tips.2009.08.004
Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer.
Y. Malam (2009)
10.1155/2011/408675
Emerging technologies of polymeric nanoparticles in cancer drug delivery
E. Brewer (2011)
10.1289/EHP.01109S4523
Ambient particle inhalation and the cardiovascular system: potential mechanisms.
K. Donaldson (2001)
10.1164/RCCM.200410-1414OC
Regional lung deposition and bronchodilator response as a function of beta2-agonist particle size.
O. Usmani (2005)
10.1016/J.TUBE.2004.11.003
Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis.
R. Pandey (2005)
10.2307/3431325
Mechanisms, measurement, and significance of lung macrophage function.
J. Brain (1992)
10.1016/j.ijpharm.2008.10.003
Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products.
J. Pardeike (2009)
10.1513/PATS.200409-049TA
The lungs as a portal of entry for systemic drug delivery.
John S. Patton (2004)
10.1016/j.colsurfb.2010.07.020
Curcuminoids-loaded lipid nanoparticles: novel approach towards malaria treatment.
Aditya P Nayak (2010)
10.1080/1061186021000054933
Lymphatic Uptake of Pulmonary Delivered Radiolabelled Solid Lipid Nanoparticles
M. Videira (2002)
Nebulization of liposomes
R. W. Niven (1991)
10.1093/CARCIN/18.2.423
Effects of particle exposure and particle-elicited inflammatory cells on mutation in rat alveolar epithelial cells.
K. Driscoll (1997)
10.2307/1308754
Defense Mechanisms of The Respiratory System
R. Schlesinger (1982)
10.1093/TOXSCI/KFL128
Pulmonary bioassay studies with nanoscale and fine-quartz particles in rats: toxicity is not dependent upon particle size but on surface characteristics.
D. Warheit (2007)
10.1042/CS0740373
Effects of pH and osmolarity on aerosol-induced cough in normal volunteers.
R. H. Lowry (1988)
10.1515/9783111697888-007
E
Adam S. Opalski (1824)
10.1515/9783111413426-016
Assessing L2 Writing in the Absence of Scoring Procedures: Construction of Rating Scales in a Cypriot-greek Efl in Class Context
Olivier Giraud (1824)
10.1016/0305-0491(79)90053-1
The distribution of lipoprotein lipase (clearing factor lipase) activity in the adiposal, muscular and lung tissues of ten animal species.
A. Cryer (1979)
10.1016/J.JCONREL.2003.10.001
Absorption enhancers in pulmonary protein delivery.
Alamdar Hussain (2004)
10.1007/978-1-4020-6076-2_2
Biokinetics and Effects of Nanoparticles
G. Oberdörster (2007)
10.1016/0272-0590(88)90284-9
Possible mechanisms to explain dust overloading of the lungs.
P. Morrow (1988)
Solid lipid nanoparticles for pulmonary delivery of Beclomathasone dipropionate: Development and in vitro assessment
V. Andrieu (2009)
10.1016/0378-5173(90)90287-E
The stability of liposomes to nebulisation
K. Taylor (1990)
The nanoscale in pulmonary delivery
P.G.A. Rogueda (2007)
10.1016/0168-3659(94)90047-7
Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization
C. Schwarz (1994)
10.1016/j.biomaterials.2010.05.009
Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection.
J. Lipka (2010)
Nanoparticles as a gastroadhesive drug delivery system
V. Lenaerts (1990)
10.1016/j.addr.2007.11.006
Targeted delivery of nanoparticles for the treatment of lung diseases.
S. Azarmi (2008)
10.1289/ehp.8497
Induction of Inflammation in Vascular Endothelial Cells by Metal Oxide Nanoparticles: Effect of Particle Composition
A. Gojova (2007)
10.5246/JCPS.2011.04.049
Preparation and characterization of budesonide-loaded solid lipid nanoparticles for pulmonary delivery
Peiran Zhang (2011)
10.1023/A:1014276917363
Production and Characterization of a Budesonide Nanosuspension for Pulmonary Administration
C. Jacobs (2004)
10.1016/J.JCONREL.2004.01.027
Pulmonary delivery of growth hormone using dry powders and visualization of its local fate in rats.
C. Bosquillon (2004)
10.1016/J.EJPB.2005.03.006
Characterisation of surface-modified solid lipid nanoparticles (SLN): influence of lecithin and nonionic emulsifier.
M. Schubert (2005)
10.1016/j.addr.2011.05.017
Lymphatic drug delivery using engineered liposomes and solid lipid nanoparticles.
S. Cai (2011)
10.1080/02652040600788221
Lymphatic uptake of lipid nanoparticles following endotracheal administration
M. A. Videira (2006)
10.1016/S0939-6411(99)00049-1
An in-vitro assessment of a NanoCrystal beclomethasone dipropionate colloidal dispersion via ultrasonic nebulization.
K. Ostrander (1999)
10.1080/00984100290071658
EXTRAPULMONARY TRANSLOCATION OF ULTRAFINE CARBON PARTICLES FOLLOWING WHOLE-BODY INHALATION EXPOSURE OF RATS
G. Oberdörster (2002)
10.1016/j.pharmthera.2008.07.001
Health effects related to nanoparticle exposures: environmental, health and safety considerations for assessing hazards and risks.
D. Warheit (2008)
10.1007/s00204-010-0560-6
Nanotoxicology: a perspective and discussion of whether or not in vitro testing is a valid alternative
M. Clift (2010)
10.1016/j.jconrel.2011.08.008
Microencapsulated chitosan nanoparticles for pulmonary protein delivery: in vivo evaluation of insulin-loaded formulations.
S. Al-Qadi (2012)
10.1016/J.IJPHARM.2006.02.045
Oral bioavailability of cyclosporine: solid lipid nanoparticles (SLN) versus drug nanocrystals.
R. Mueller (2006)
Development of dexamethasone-loaded nanostructured lipid carriers (NLC) for pulmonary application
S. Weber (2012)
10.1016/J.TOXLET.2009.06.074
An in vitro model of the human epithelial airway barrier to study the toxicity of nanoparticles
B. Rothen-Rutishauser (2009)
10.1002/CHIN.200748264
Solid Lipid Nanoparticles for Targeted Brain Drug Delivery
P. Blasi (2007)
10.1002/JPS.10386
Pulmonary absorption rate and bioavailability of drugs in vivo in rats: structure-absorption relationships and physicochemical profiling of inhaled drugs.
Ann Tronde (2003)
Optimizing aerosol delivery by pressurized metered-dose inhalers.
B. Rubin (2005)
10.1006/TAAP.1996.0330
Stimulation of human and rat alveolar macrophages by urban air particulates: effects on oxidant radical generation and cytokine production.
S. Becker (1996)
10.1093/jnci/djn389
Annual Report to the Nation on the Status of Cancer, 1975–2005, Featuring Trends in Lung Cancer, Tobacco Use, and Tobacco Control
A. Jemal (2008)
10.1080/08958370902942517
Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs
W. Kreyling (2009)
10.1007/978-3-0348-8476-1_9
Airway epithelial cells
J. Devalia (2000)
Correlation between particle size
G. Oberdörster (1994)
10.1089/JAM.1994.7.49
Drug delivery via the respiratory tract.
P. Byron (1994)
10.1161/01.CIR.103.23.2810
Increased Particulate Air Pollution and the Triggering of Myocardial Infarction
A. Peters (2001)
10.1080/10590500802494538
Airborne Particulate Matter and Human Health: Toxicological Assessment and Importance of Size and Composition of Particles for Oxidative Damage and Carcinogenic Mechanisms
A. Valavanidis (2008)
10.1023/A:1012024021511
Nebulization of NanoCrystals™: Production of a Respirable Solid-in-Liquid-in-Air Colloidal Dispersion
T. Wiedmann (2004)
10.1016/j.ijpharm.2011.07.040
Development of an itraconazole-loaded nanostructured lipid carrier (NLC) formulation for pulmonary application.
J. Pardeike (2011)
Dexamethasone-loaded NLC: a stable carrier system for pulmonary application by jet stream nebulisation
S. Weber (2012)
10.1016/S0378-5173(01)00882-1
Effect of lipid matrix and size of solid lipid nanoparticles (SLN) on the viability and cytokine production of macrophages.
N. Schöler (2002)
10.1006/TAAP.2001.9343
Ultrafine airborne particles cause increases in protooncogene expression and proliferation in alveolar epithelial cells.
C. Timblin (2002)
10.1016/j.ijpharm.2008.08.014
Preparation and characterization of spray-dried tobramycin powders containing nanoparticles for pulmonary delivery.
G. Pilcer (2009)
10.1016/0378-5173(95)04286-5
Crystallization tendency and polymorphic transitions in triglyceride nanoparticles
H. Bunjes (1996)
10.1016/j.ijpharm.2010.03.034
Optimization and physicochemical characterization of a triamcinolone acetonide-loaded NLC for ocular antiangiogenic applications.
J. Araújo (2010)
10.1016/j.nano.2011.12.007
Preclinical evaluation of a pulmonary delivered paclitaxel-loaded lipid nanocarrier antitumor effect.
M. Videira (2012)
10.1093/jnci/djs491
Annual Report to the Nation on the Status of Cancer, 1975–2009, Featuring the Burden and Trends in Human Papillomavirus (HPV)–Associated Cancers and HPV Vaccination Coverage Levels
A. Jemal (2013)
10.1126/SCIENCE.1114397
Toxic Potential of Materials at the Nanolevel
A. Nel (2006)
Current hypotheses on the mechanisms of toxicity of ultrafine particles.
K. Donaldson (2003)
10.1164/AJRCCM.160.SUPPLEMENT_1.11
Airway epithelial cells, cytokines, and pollutants.
P. Mills (1999)
10.1016/J.ADDR.2012.09.021
Solid lipid nanoparticles
W. Mehnert (2012)
Inhalation of poorly soluble particles
C. L. Tran (2000)
10.1080/08958370903005769
Low cytotoxicity of solid lipid nanoparticles in in vitro and ex vivo lung models
M. Nassimi (2009)
10.1023/A:1015896121377
Nebulization of Liposomes. II. The Effects of Size and Modeling of Solute Release Profiles
R. Niven (2004)
10.1016/J.IJPHARM.2007.02.035
The influence of fluid physicochemical properties on vibrating-mesh nebulization.
Thu Ghazanfari (2007)
10.1006/EXCR.1998.4172
Characterization of the A549 cell line as a type II pulmonary epithelial cell model for drug metabolism.
K. Foster (1998)
10.2174/1381612013397384
Alternative routes of administration as an approach to improve insulin therapy: update on dermal, oral, nasal and pulmonary insulin delivery.
L. Heinemann (2001)
Zetapotential und Partikelladung in der Laborpraxis
R. H. Müller (1996)
10.1007/978-981-32-9413-4_4
Extrapulmonary tuberculosis.
S. Sharma (2004)
10.1016/0378-4274(84)90074-2
Exposure-response relationship of bronchial mucociliary clearance in rabbits following acute inhalations of sulfuric acid mist.
R. Schlesinger (1984)
Biopharmazie
A. Langner (2011)
10.1016/S0939-6411(97)00098-2
Mucoadhesion of colloidal particulate systems in the gastro-intestinal tract
G. Ponchel (1997)
10.1016/0034-5687(78)90104-4
The normal human lung: ultrastructure and morphometric estimation of diffusion capacity.
P. Gehr (1978)
10.1016/S0899-9007(99)00102-1
Development of fat emulsions.
A. Wretlind (1981)
10.1007/s11095-010-0201-z
Inhalable Microparticles as Carriers for Pulmonary Delivery of Thymopentin-Loaded Solid Lipid Nanoparticles
Y. Li (2010)
10.1016/J.ADDR.2007.04.010
Production of solid lipid nanoparticle suspensions using supercritical fluid extraction of emulsions (SFEE) for pulmonary delivery using the AERx system.
P. Chattopadhyay (2007)
10.2174/187221111797200597
New methods for lipid nanoparticles preparation.
F. Corrias (2011)
Müller - Goymann , Characterisation of surfacemodified solid lipid nanoparticles ( SLN ) : influence of lecithin and nonionic emulsifier
C. Schleh M. Nassimi (2005)
10.1177/014362448400500109
[Air pollution].
L. Friberg (1961)
10.1016/j.scitotenv.2010.12.033
Effects of various physicochemical characteristics on the toxicities of ZnO and TiO nanoparticles toward human lung epithelial cells.
I-Lun Hsiao (2011)
10.1023/A:1015844430695
Nebulization of Liposomes. III. The Effects of Operating Conditions and Local Environment
R. Niven (2004)
10.1006/RTPH.1995.1017
Lung particle overload: implications for occupational exposures to particles.
G. Oberdörster (1995)
10.1136/oem.37.4.337
Deposition, retention, and clearance of inhaled particles.
M. Lippmann (1980)
10.1016/j.jconrel.2008.07.034
Development of chitosan-SLN microparticles for chemotherapy: in vitro approach through efflux-transporter modulation.
Kiran Dharmala (2008)
10.1164/RCCM.200211-1297OC
Detection of telomerase expression in mediastinal lymph nodes of patients with lung cancer.
M. Wallace (2003)
Acute pulmonary effects of ultrafine particles in rats and mice.
G. Oberdörster (2000)
10.1185/030079903125002793
Inspiratory flow rates and volumes with the Aerolizer dry powder inhaler in asthmatic children and adults
E. Bronsky (2004)
The lung and basic considerations for lung delivery
M. Kohlhäufl (2007)
Lipid nanoparticles (SLN
J. Pardeike (2009)
10.1016/0928-0987(94)90407-3
P234 solid lipid nanoparticles stabilized by tyloxapol
B. Siekmann (1994)
10.1016/J.EJPB.2007.07.011
Novel cationic solid lipid nanoparticles enhanced p53 gene transfer to lung cancer cells.
S. Choi (2008)
10.1016/S0378-5173(01)00660-3
Surfactant, but not the size of solid lipid nanoparticles (SLN) influences viability and cytokine production of macrophages.
N. Schöler (2001)
10.1016/j.ijpharm.2010.03.017
Formulation strategy and use of excipients in pulmonary drug delivery.
G. Pilcer (2010)
10.1016/S0169-409X(00)00121-6
Lymphatic targeting with nanoparticulate system.
Y. Nishioka (2001)
: production of a respirable solidinliquidinair colloidal dispersion
L. DeCastro T. S. Wiedmann (1997)
10.1289/ehp.9254
In Search of the Most Relevant Parameter for Quantifying Lung Inflammatory Response to Nanoparticle Exposure: Particle Number, Surface Area, or What?
K. Wittmaack (2007)
10.1136/thx.45.10.728
Jet and ultrasonic nebuliser output: use of a new method for direct measurement of aerosol output.
J. Dennis (1990)
10.1002/AR.1092030208
Pulmonary alveolar pores and alveolar macrophage‐mediated particle clearance
J. Ferin (1982)
10.1016/0169-409X(95)00113-L
Mechanisms of macromolecule absorption by the lungs
John S. Patton (1996)
10.1016/0006-2952(96)00386-3
Cytokine production in human and rat macrophages and dicatechol rooperol and esters.
A. Guzdek (1996)
10.1186/1752-153X-3-16
Biodistribution of gold nanoparticles in mouse lung following intratracheal instillation
E. Sadauskas (2009)
10.1164/ARRD.1977.115.4.625
Alveolar clearance and the role of the pulmonary lymphatics.
J. M. Lauweryns (1977)
10.4103/0970-2113.44386
Comparison of the bronchodilatation produced by inhalation of ipratropium bromide and salbutamol sequentially and in fixed dose combination in stable bronchial asthma patients
A. Mohan (2006)
10.1016/s0034-5687(00)00201-2
Airway receptors.
J. Widdicombe (2001)
10.1016/S1369-7021(04)00081-1
NANOPARTICLES: HEALTH IMPACTS?
D. Warheit (2004)
10.1007/0-387-22652-4_1
Implementation of Multidisciplinary Care in the Treatment of Patients with Lung Cancer
J. Putnam (2003)
10.1016/j.ijpharm.2008.04.044
Dry powder inhalers (DPIs)--a review of device reliability and innovation.
N. Islam (2008)
10.1016/j.ijpharm.2008.02.011
Inhaled nanoparticles--a current review.
W. Yang (2008)
10.1016/J.TIBTECH.2007.09.005
Nanoparticles for drug delivery to the lungs.
Jean Sung (2007)
10.1166/JNN.2011.3119
Beclomethasone-loaded lipidic nanocarriers for pulmonary drug delivery: preparation, characterization and in vitro drug release.
C. Jaafar-Maalej (2011)
10.1080/08958370600748455
No Significant Translocation of Inhaled 35-nm Carbon Particles to the Circulation in Humans
P. Wiebert (2006)
10.1006/TAAP.2001.9128
Impairment of alveolar macrophage phagocytosis by ultrafine particles.
L. Renwick (2001)
Mechanisms
J. D. Brain (1992)
10.1016/j.rmed.2010.04.012
Choosing inhaler devices for people with asthma: current knowledge and outstanding research needs.
J. Haughney (2010)
10.1016/B978-012352335-8/50087-9
Effects of Cigarette Smoke and Air Pollutants on the Lower Respiratory Tract
P. Jeffery (1999)
10.1378/CHEST.117.2_SUPPL.1S
The impact of COPD on lung health worldwide: epidemiology and incidence.
S. Hurd (2000)
10.1201/9781420050608.ch2.32
Surfactant의 광범위 이용
오연균 (2003)
10.1186/1743-8977-7-2
Deposition and biokinetics of inhaled nanoparticles
M. Geiser (2009)
10.1517/17425247.4.6.607
The nanoscale in pulmonary delivery. Part 2: formulation platforms
P. Rogueda (2007)
10.1164/AJRCCM.154.3.8810618
Glucocorticoid receptor localization in normal and asthmatic lung.
I. Adcock (1996)
10.1016/S0169-409X(01)00105-3
Solid lipid nanoparticles: production, characterization and applications.
W. Mehnert (2001)
10.1002/JEMT.10105
Morphological aspects of particle uptake by lung phagocytes
M. Geiser (2002)
10.1289/ehp.8006
Ultrafine Particles Cross Cellular Membranes by Nonphagocytic Mechanisms in Lungs and in Cultured Cells
M. Geiser (2005)
10.1016/S0165-5876(99)00172-X
Nasal allergy and atmospheric pollution.
D. Passali (1999)
10.1016/J.JAEROSCI.2011.06.005
In-vitro cell exposure studies for the assessment of nanoparticle toxicity in the lung - A dialog between aerosol science and biology
Hanns-Rudolf Paur (2011)
10.1211/0022357023754
Cytotoxicity studies of Dynasan 114 solid lipid nanoparticles (SLN) on RAW 264.7 macrophages—impact of phagocytosis on viability and cytokine production
C. Olbrich (2004)
Medication vehicles made of solid lipid particles (solid lipid nanospheres sln)
룩크스 스테판 (1992)
Nebulization of liposomes
R. W. Niven (1992)
10.1016/0169-409X(95)00045-9
Targeting of colloids to lymph nodes: influence of lymphatic physiology and colloidal characteristics
A. E. Hawley (1995)
Feste Lipidnanopartikel: Herstellung
C. Schwarz (1995)
10.1080/08982100600680733
Nebulization of Liposomal rh-Cu/Zn–SOD with a Novel Vibrating Membrane Nebulizer
A. Wagner (2006)
10.1016/S0378-5173(98)00212-9
Nebulisers for the generation of liposomal aerosols
P. A. Bridges (1998)
Education: Ultrafine Particles
K. Donaldson (2001)
10.1177/0148607181005003230
Invited Review: Development of Fat Emulsions
A. Wretlind (1981)
10.1056/NEJMRA054308
The asthma epidemic.
W. Eder (2006)
10.1016/J.JCONREL.2005.02.028
Influence of administration route on tumor uptake and biodistribution of etoposide loaded solid lipid nanoparticles in Dalton's lymphoma tumor bearing mice.
L. Harivardhan Reddy (2005)
10.1016/j.ijpharm.2008.01.008
Solid lipid nanoparticles for pulmonary delivery of insulin.
J. Liu (2008)
10.1055/b-0033-2009
7 Anatomie und Physiologie des Ohres
R. Probst (2008)
10.1016/S0378-5173(97)00113-0
In vitro evaluation of dry powder inhalers I: drug deposition of commonly used devices
H. Steckel (1997)
10.1080/00984100290071649
TRANSLOCATION OF ULTRAFINE INSOLUBLE IRIDIUM PARTICLES FROM LUNG EPITHELIUM TO EXTRAPULMONARY ORGANS IS SIZE DEPENDENT BUT VERY LOW
W. Kreyling (2002)
10.1152/JAPPLPHYSIOL.00970.2003
Mucociliary and long-term particle clearance in the airways of healthy nonsmoker subjects.
W. Moeller (2004)
Lipoprotein lipase: a source of free fatty acids in bronchoalveolar lining fluid.
J. Coonrod (1989)
10.1016/J.ADDR.2007.08.023
In vivo animal models for drug delivery across the lung mucosal barrier.
Sally-Ann Cryan (2007)
10.1161/HC0402.104118
Passage of Inhaled Particles Into the Blood Circulation in Humans
A. Nemmar (2002)
10.1186/1743-8977-7-1
SiO2 nanoparticles induce cytotoxicity and protein expression alteration in HaCaT cells
X. Yang (2009)
10.1016/S0140-6736(11)61445-1
Aerosol drug delivery: developments in device design and clinical use
J. Smith (2011)
Solid lipid nanoparticles as a drug delivery system for peptides and proteins , Adv
A. J. Almeida (2007)
Pharmazeutische Technologie
R. Voigt (2000)
10.1016/J.ADDR.2006.07.009
Clinical perspectives on pulmonary systemic and macromolecular delivery.
G. Scheuch (2006)
Wen Ding
L. Hu (2010)
10.1016/S0021-8502(97)00464-3
Ultrafine (nanometre) particle mediated lung injury
K. Donaldson (1998)
10.1016/0928-0987(94)90411-1
PosterP238 effect of storage conditions on long-term stability of “solid lipid nanoparticles” (SLN) in aqueous dispersion
C. Freitas (1994)
10.3109/02652049809006847
Drug retention and stability of solid lipid nanoparticles containing azidothymidine palmitate after autoclaving, storage and lyophilization.
H. Heiati (1998)
10.1152/JAPPL.1990.69.4.1302
Supramicron-sized particle clearance from alveoli: route and kinetics.
E. Langenback (1990)
10.1586/ers.11.89
Inhaler technique and training in people with chronic obstructive pulmonary disease and asthma
T. Capstick (2012)
10.1016/J.TAAP.2007.05.001
Endocytosis, oxidative stress and IL-8 expression in human lung epithelial cells upon treatment with fine and ultrafine TiO2: role of the specific surface area and of surface methylation of the particles.
S. Singh (2007)
10.1016/J.TOX.2006.11.002
Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties.
D. Warheit (2007)
10.3109/10611869509015955
Molecular weight-dependent lymphatic transfer of fluorescein isothiocyanate-labeled dextrans after intrapulmonary administration and effects of various absorption enhancers on the lymphatic transfer of drugs in rats.
K. Hanatani (1995)
10.2174/1566524013363384
Receptors for unopsonized particles: the role of alveolar macrophage scavenger receptors.
A. Palecanda (2001)
10.1016/j.jconrel.2010.02.006
Formulation, characterization and pulmonary deposition of nebulized celecoxib encapsulated nanostructured lipid carriers.
R. Patlolla (2010)
10.1289/EHP.102-1567252
Correlation between Particle Size, In Vivo Particle Persistence, and Lung Injury
G. Oberdoerster (1994)
10.1002/(SICI)1097-0142(19960615)77:12<2464::AID-CNCR8>3.0.CO;2-M
United States lung carcinoma incidence trends: Declining for most histologic types among males, increasing among females
W. Travis (1996)
10.1016/j.ejpb.2008.09.003
Lipid nanoparticles for parenteral delivery of actives.
Medha D. Joshi (2009)
Pulmonal applizierte Therapeutika – ein Blick in die Pipeline
K. Schmid (2010)
Preparation and characterization of solid lipid nanoparticles loaded with epirubicin for pulmonary delivery.
L. Hu (2010)
10.1016/J.IJPHARM.2003.09.049
Active and intelligent inhaler device development.
Mike Tobyn (2004)
10.1016/j.tox.2009.04.001
Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: role of particle surface area and internalized amount.
Salik Hussain (2009)
10.1016/0378-5173(93)90039-I
Ultrasonic nebulisation of pentamidine isethionate
K. Taylor (1993)
10.1016/S0928-0987(97)86243-4
Solid lipid nanoparticles (SLN) for controlled drug delivery
R. Mueller (1996)
10.1080/13602360500115095
Formulation
J. Peponis (2005)
10.1080/08958370050166796
Inhalation of poorly soluble particles. II. Influence Of particle surface area on inflammation and clearance.
C. Tran (2000)
10.1166/JBN.2009.036
Solid lipid nanoparticles as insulin inhalation carriers for enhanced pulmonary delivery.
R. C. Bi (2009)
10.1080/08958370902962283
Inhalative nanomedicine—Opportunities and challenges
M. Bur (2009)
10.1016/J.FREERADBIOMED.2005.01.004
Oxidative stress and lipid mediators induced in alveolar macrophages by ultrafine particles.
I. Beck-Speier (2005)
10.1016/S0378-5173(96)04822-3
Sterilization and freeze-drying of drug-free and drug-loaded solid lipid nanoparticles
R. Cavalli (1997)
The migration of bronchoalveolar macrophages into hilar lymph nodes.
D. Corry (1984)
10.1021/JS980060R
Pulmonary delivery of nanoparticles of insoluble, iodinated CT X-ray contrast agents to lung draining lymph nodes in dogs.
G. Mcintire (1998)
10.1136/oem.58.3.211
Ultrafine particles
K. Donaldson (2001)
10.1016/S0378-5173(98)00404-9
Enzymatic degradation of SLN-effect of surfactant and surfactant mixtures.
C. Olbrich (1999)
10.1016/J.ADDR.2003.12.002
Solid lipid nanoparticles for parenteral drug delivery.
S. Wissing (2004)
10.1016/j.ejpb.2010.02.014
A toxicological evaluation of inhaled solid lipid nanoparticles used as a potential drug delivery system for the lung.
M. Nassimi (2010)
10.1016/j.ijpharm.2012.12.040
Air-jet and vibrating-mesh nebulization of niosomes generated using a particulate-based proniosome technology.
A. Elhissi (2013)
10.1164/AJRCCM.164.5.2010160
Cytokines involved in the systemic inflammatory response induced by exposure to particulate matter air pollutants (PM(10)).
S. V. van Eeden (2001)
10.1023/A:1011975120776
Solid Lipid Nanoparticles in Lymph and Plasma After Duodenal Administration to Rats
A. Bargoni (2004)
10.1080/13547500902965617
Dosimetry and toxicology of inhaled ultrafine particles
O. Schmid (2009)
Pulmonary drug targeting with modern inhalation devices
G. Scheuch (2014)
10.1515/9783111576855-009
D
Saskia Bonjour (1824)
10.1016/0378-5173(95)04388-8
Thymopentin in solid lipid nanoparticles
S. Morel (1996)
10.1289/ehp.94102s5173
Correlation between particle size, in vivo particle persistence, and lung injury.
G. Oberdörster (1994)
10.1016/J.ADDR.2007.04.007
Solid lipid nanoparticles as a drug delivery system for peptides and proteins.
A. Almeida (2007)
10.1186/rr58
The lung as a route for systemic delivery of therapeutic proteins and peptides
R. Uchenna Agu (2001)
10.1016/S0378-5173(96)04731-X
Biodegradation of solid lipid nanoparticles as a function of lipase incubation time
R. Mueller (1996)



This paper is referenced by
Lipid Nanoparticles ( SLNs and NLCs ) : Wide Range of Application from Cosmetics to Cancer Chemotherapy
R. A. Sanad (2015)
10.1016/J.JDDST.2018.06.010
Monoacyl-phospatidylcholine based drug delivery systems for lipophilic drugs: Nanostructured lipid carriers vs. nano-sized emulsions
M. Wolf (2018)
10.1016/j.msec.2016.05.119
Solid lipid nanoparticles as attractive drug vehicles: Composition, properties and therapeutic strategies.
M. Geszke-Moritz (2016)
10.1016/j.ijpharm.2015.12.028
Pulmonary delivery of tobramycin-loaded nanostructured lipid carriers for Pseudomonas aeruginosa infections associated with cystic fibrosis.
M. Moreno-Sastre (2016)
10.1080/02678292.2016.1185172
Relationship between liquid crystalline phase stability and ingredient composition in liquid crystal oil–water emulsion
W. S. Jung (2016)
10.1038/s41598-020-63793-z
Applying nanotechnology to increase the rumen protection of amino acids in dairy cows
J. Albuquerque (2020)
10.1016/J.JDDST.2018.10.007
Solid lipid nanoparticles modified with amphipathic chitosan derivatives for improved stability in the gastrointestinal tract
Suping Qiu (2018)
10.1016/j.ijpharm.2016.11.002
Encapsulation of NSAIDs for inflammation management: Overview, progress, challenges and prospects.
W. Badri (2016)
10.1016/j.ijpharm.2018.04.030
Preparation of drug‐loaded small unilamellar liposomes and evaluation of their potential for the treatment of chronic respiratory diseases
V. de Leo (2018)
10.1016/B978-0-12-809717-5.00016-6
Toxicity Concerns of Nanocarriers
Shima Tavakol (2017)
10.1007/978-3-030-29207-2_4
Improving Bioavailability of Vitamin A in Food by Encapsulation: An Update
V. K. Maurya (2020)
10.1016/j.jpba.2018.03.021
Development of a HILIC method for the determination of 5‐fluorouracil from nano drug delivery systems and rat skin extracts
Gulin Amasya (2018)
10.1186/s11671-017-2249-8
Nanotechnology: from In Vivo Imaging System to Controlled Drug Delivery
M. Mir (2017)
10.1016/j.jconrel.2014.06.055
Antibiotic-free nanotherapeutics: ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors.
N. Nafee (2014)
10.1080/21691401.2016.1241794
Histological evaluation of follicular delivery of arginine via nanostructured lipid carriers: a novel potential approach for the treatment of alopecia
Seyedeh Narjes Yazdani-Arazi (2017)
10.1016/j.ejpb.2018.10.017
Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release
Aldemar Gordillo‐Galeano (2018)
10.1016/j.jcf.2015.12.005
Killing effect of nanoencapsulated colistin sulfate on Pseudomonas aeruginosa from cystic fibrosis patients.
E. Sans-Serramitjana (2016)
10.1016/B978-0-323-52725-5.00016-2
Oral Administration of Nanoparticles-Based TB Drugs
J. Magalhães (2017)
10.1016/j.ejps.2018.10.003
Nanostructured lipid carriers versus solid lipid nanoparticles for the potential treatment of pulmonary hypertension via nebulization
N. Nafee (2018)
10.1080/02652048.2016.1242665
Stability study of sodium colistimethate-loaded lipid nanoparticles
M. Moreno-Sastre (2016)
10.1016/B978-0-323-46144-3.00018-0
Targeted delivery of anticancer drugs: new trends in lipid nanocarriers
M. B. Oliveira (2017)
10.1007/978-3-030-35910-2_1
Introduction to Nanomedicine in Drug Delivery
T. Chavan (2020)
10.1007/s11051-015-2892-x
Host-directed strategies using lipid nanoparticles to reduce mycobacteria survival
L. Pereira (2015)
10.1016/j.chemphyslip.2016.05.006
Encapsulation of biophenolic phytochemical EGCG within lipid nanoparticles enhances its stability and cytotoxicity against cancer.
Rasika Radhakrishnan (2016)
10.1016/j.jconrel.2016.09.009
Temoporfin-loaded 1-tetradecanol-based thermoresponsive solid lipid nanoparticles for photodynamic therapy.
Ingrid Brezániová (2016)
10.1016/j.ijpharm.2018.05.070
Nanostructured lipid carriers‐based drug delivery for treating various lung diseases: A State‐of‐the‐Art Review
Tulshidas S Patil (2018)
10.1016/j.addr.2014.05.008
Improving the efficacy of inhaled drugs in cystic fibrosis: challenges and emerging drug delivery strategies.
I. d'Angelo (2014)
10.3109/10717544.2015.1055619
Lung cancer combination therapy: co-delivery of paclitaxel and doxorubicin by nanostructured lipid carriers for synergistic effect
Y. Wang (2016)
10.32657/10356/73467
Development of inhalable antimicrobial nanoparticle complex
H. Yu (2018)
10.3390/molecules24142640
The Neuroprotective Effects of Astaxanthin: Therapeutic Targets and Clinical Perspective
S. Fakhri (2019)
PRELIMINARY CHARACTERIZATION OF MODIFIED NANOSTRUCTURED LIPID CARRIERS AS POTENTIAL DRUG DELIVERY SYSTEMS
Ugwu (2019)
10.1007/s11051-017-4042-0
Lipid-based nanoparticles as drug delivery system for paclitaxel in breast cancer treatment
Sara Pacelli Sousa Marcial (2017)
See more
Semantic Scholar Logo Some data provided by SemanticScholar