Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

Time Lasting S-nitrosoglutathione Polymeric Nanoparticles Delay Cellular Protein S-nitrosation.

W. Wu, C. Gaucher, R. Diab, I. Fries, Y. Xiao, Xian-ming Hu, P. Maincent, A. Sapin-Minet
Published 2015 · Chemistry, Medicine

Save to my Library
Download PDF
Analyze on Scholarcy
Share
Physiological S-nitrosothiols (RSNO), such as S-nitrosoglutathione (GSNO), can be used as nitric oxide (NO) donor for the treatment of vascular diseases. However, despite a half-life measured in hours, the stability of RSNO, limited by enzymatic and non-enzymatic degradations, is too low for clinical application. So, to provide a long-lasting effect and to deliver appropriate NO concentrations to target tissues, RSNO have to be protected. RSNO encapsulation is an interesting response to overcome degradation and provide protection. However, RSNO such as GSNO raise difficulties for encapsulation due to its hydrophilic nature and the instability of the S-NO bound during the formulation process. To our knowledge, the present study is the first description of the direct encapsulation of GSNO within polymeric nanoparticles (NP). The GSNO-loaded NP (GSNO-NP) formulated by a double emulsion process, presented a mean diameter of 289 ± 7 nm. They were positively charged (+40 mV) due to the methacrylic acid and ethylacrylate polymer (Eudragit® RL) used and encapsulated GSNO with a satisfactory efficiency (i.e. 54% or 40 mM GSNO loaded in the NP). In phosphate buffer (37 °C; pH 7.4), GSNO-NP released 100% of encapsulated GSNO within 3h and remained stable still 6h. However, in contact with smooth muscle cells, maximum protein nitrosation (a marker of NO bioavailability) was delayed from 1h for free GSNO to 18h for GSNO-NP. Therefore, protection and sustained release of NO were achieved by the association of a NO donor with a drug delivery system (such as polymeric NP), providing opportunities for vascular diseases treatment.
This paper references
10.2174/157341213804806098
A Complete Physicochemical Identity Card of S-nitrosoglutathione
Marianne Parent (2013)
10.3181/00379727-211-43950A
Nitric Oxide and Cyclic GMP Signaling
L. McDonald (1996)
10.1067/MSY.2003.230
Inhibition of neural nitric oxide synthase attenuates the chloride secretory response to stroking in human jejunum.
Brian N. King (2003)
10.1016/S0168-3659(96)01545-3
The effect of Eudragit RL-100 on the mechanical and mucoadhesion properties of polycarbophil dosage forms
B. Tirosh (1997)
10.1016/S0140-6736(94)90931-8
Increased nitric oxide in exhaled air of asthmatic patients
S. Kharitonov (1994)
10.2174/0929867043364397
S-nitrosothiols as nitric oxide-donors: chemistry, biology and possible future therapeutic applications.
H. Al-Sa’doni (2004)
10.1016/0014-2999(87)90392-X
Tolerance to relaxation in rat aorta: comparison of an S-nitrosothiol with nitroglycerin.
E. Kowaluk (1987)
10.1021/bm200159h
S-nitrosophytochelatins: investigation of the bioactivity of an oligopeptide nitric oxide delivery system.
Lamia Heikal (2011)
10.1002/cbf.1738
In vitro evaluation of the safe margin, antithrombotic and antiproliferative actions for the treatment of restenosis: Nitric oxide donor and polymers
Cláudia de Lourdes Sorragi (2011)
10.1074/JBC.270.47.28158
Kinetics of Nitrosation of Thiols by Nitric Oxide in the Presence of Oxygen (*)
V. Kharitonov (1995)
10.1016/J.JVS.2004.07.007
Nitric oxide-releasing biopolymers inhibit thrombus formation in a sheep model of arteriovenous bridge grafts.
Paul S Fleser (2004)
10.1016/J.BIOMATERIALS.2004.03.031
Nitric oxide-releasing sol-gels as antibacterial coatings for orthopedic implants.
B. J. Nablo (2005)
改善されたアップコンバージョン蛍光とMR緩和でのNaYF 4 :Yb, Er/NaGdF 4 ナノ結晶のシード媒介合成
Guo Hai (2010)
10.1089/ars.2012.4744
S-nitrosothiols and the S-nitrosoproteome of the cardiovascular system.
B. Maron (2013)
10.1016/J.CARDIORES.2007.03.016
Signalling by NO-induced protein S-nitrosylation and S-glutathionylation: convergences and divergences.
A. Martínez-Ruiz (2007)
10.1097/00005344-199504000-00008
Acute and Chronic Effect of Molsidomine Extended Release on Exercise Capacity in Patients with Stable Angina, a Double‐Blind Cross‐Over Clinical Trial Versus Placebo
R. Messin (1995)
10.1093/CLINCHEM/33.4.490
Further investigations regarding the toxicity of sodium nitroprusside.
A. Butler (1987)
10.2174/1381612811306030458
S-nitrosation/denitrosation in cardiovascular pathologies: facts and concepts for the rational design of S-nitrosothiols.
C. Gaucher (2013)
10.1088/0957-4484/21/30/305102
Fabrication and characterization of an inorganic gold and silica nanoparticle mediated drug delivery system for nitric oxide.
Amitava Das (2010)
10.2174/1573413711309010003
Development of a Sustained-release System for Nitric Oxide Delivery using Alginate/Chitosan Nanoparticles
P. D. Marcato (2013)
Differential hemodynamic effects and tolerance properties of nitroglycerin and an S-nitrosothiol in experimental heart failure.
J. Bauer (1991)
10.1042/BJ3230477
S-Nitrosoglutathione as a substrate for γ-glutamyl transpeptidase
N. Hogg (1997)
10.1111/j.1743-6109.2010.02045.x
Vascular modifications of the clitoris induced by topic nitric oxide donor gel--preliminary study.
S. Souto (2011)
10.1124/JPET.105.087429
Development of Polyethylene Glycol-Conjugated Poly-S-Nitrosated Serum Albumin, a Novel S-Nitrosothiol for Prolonged Delivery of Nitric Oxide in the Blood Circulation in Vivo
H. Katsumi (2005)
10.1016/J.NIOX.2006.01.011
Leishmanicidal activity of primary S-nitrosothiols against Leishmania major and Leishmania amazonensis: implications for the treatment of cutaneous leishmaniasis.
G. P. D. de Souza (2006)
NO, nitrotyrosine, and cyclic GMP in signal transduction.
K. Hanafy (2001)
10.1586/ers.11.5
Pulmonary hypertension, nitric oxide and nitric oxide-releasing compounds
G. Hagan (2011)
10.1111/j.1476-5381.1989.tb14603.x
S‐nitrosothiols as vasodilators: implications regarding tolerance to nitric oxide‐containing vasodilators
P. Henry (1989)
10.1002/jbm.a.32434
Characterization of nitric oxide-releasing microparticles for the mucosal delivery.
Jin-Wook Yoo (2010)
10.1590/S0100-879X2003000500005
Nitric oxide release from the S-nitrosothiol zinc phthalocyanine complex by flash photolysis.
J. C. Rotta (2003)
10.1002/(SICI)1096-9896(199712)183:4<469::AID-PATH931>3.0.CO;2-T
Effects of nitric oxide on the adhesion of human melanocytes to extracellular matrix components
K. Ivanova (1997)
10.1021/la403028j
Ag2S quantum dots conjugated chitosan nanospheres toward light-triggered nitric oxide release and near-infrared fluorescence imaging.
Lianjiang Tan (2013)
10.1146/ANNUREV.IMMUNOL.15.1.323
Nitric oxide and macrophage function.
J. MacMicking (1997)
10.1002/JPS.20314
Solid films of blended poly(vinyl alcohol)/poly(vinyl pyrrolidone) for topical S-nitrosoglutathione and nitric oxide release.
A. B. Seabra (2005)
10.1517/13543784.11.7.897
Inhaled diazeniumdiolates (NONOates) as selective pulmonary vasodilators
P. V. Heerden (2002)
10.1016/S0891-5849(00)00248-3
Biological chemistry and clinical potential of S-nitrosothiols.
N. Hogg (2000)
10.1097/00005344-199300221-00003
Nitric Oxide/Nucleophile Complexes: A Unique Class of Nitric Oxide‐Based Vasodilators
D. Morley (1993)
10.1016/S1089-8603(02)00009-5
Characterization of the hypotensive effect of S-nitroso-N-acetylcysteine in normotensive and hypertensive conscious rats.
K. F. S. Ricardo (2002)
10.1016/j.niox.2012.06.003
A nanoparticle delivery vehicle for S-nitroso-N-acetyl cysteine: sustained vascular response.
P. Nacharaju (2012)
10.1093/CVR/28.5.691
Effects of S-nitroso-glutathione in the human forearm circulation: evidence for selective inhibition of platelet activation.
A. D. de Belder (1994)
10.1042/BJ2980249
Nitric oxide synthases in mammals.
Richard Graham Knowles (1994)
10.1016/0165-6147(94)90319-0
Biotransformation of organic nitrates and vascular smooth muscle cell function.
B. Bennett (1994)
10.1023/A:1020150124721
Nitric Oxide: A Unique Endogenous Signaling Molecule in Vascular Biology
L. Ignarro (1999)
10.1016/0006-2952(91)90406-U
Nitric oxide generation from nitroprusside by vascular tissue. Evidence that reduction of the nitroprusside anion and cyanide loss are required.
J. Bates (1991)
10.1016/j.jprot.2009.07.002
S-Nitrosylation in plants: pattern and function.
C. Lindermayr (2009)
10.1016/s0014-2999(00)00572-0
Novel S-nitrosothiols do not engender vascular tolerance and remain effective in glyceryl trinitrate-tolerant rat femoral arteries.
M. R. Miller (2000)
10.1016/S0165-6147(00)88968-3
NO, nitrosonium ions, nitroxide ions, nitrosothiols and iron-nitrosyls in biology: a chemist's perspective.
A. Butler (1995)
10.1042/CS0980507
S-Nitrosothiols: a class of nitric oxide-donor drugs.
H. Al-Sa’doni (2000)
10.1016/J.JCONREL.2006.03.020
Oral bioavailability of a low molecular weight heparin using a polymeric delivery system.
V. Hoffart (2006)
10.1016/S0140-6736(94)90287-9
Inhibition of platelet activity by S-nitrosoglutathione during coronary angioplasty
Ej Langford (1994)
10.1111/j.1476-5381.1992.tb14517.x
S‐nitroso‐glutathione inhibits platelet activation in vitro and in vivo
M. Radomski (1992)
10.1042/BJ20040759
Platelet cell-surface protein disulphide-isomerase mediated S-nitrosoglutathione consumption.
Paul D Root (2004)
10.1016/S0142-9612(03)00153-4
Thermal and photochemical nitric oxide release from S-nitrosothiols incorporated in Pluronic F127 gel: potential uses for local and controlled nitric oxide release.
S. M. Shishido (2003)
10.1016/J.JCONREL.2006.10.023
Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats.
C. Damgé (2007)
10.1016/j.biomaterials.2008.02.004
Polyurethane with tethered copper(II)-cyclen complex: preparation, characterization and catalytic generation of nitric oxide from S-nitrosothiols.
Sangyeul Hwang (2008)
10.1007/S00604-004-0212-8
Determination of Nitric Oxide in Biological Samples
Dachun Yao (2004)
10.1016/j.molmed.2009.06.007
Protein S-nitrosylation in health and disease: a current perspective.
M. Foster (2009)
10.1016/S0008-6363(99)00135-2
Nitric oxide and penile erection: is erectile dysfunction another manifestation of vascular disease?
M. Sullivan (1999)
10.1016/j.ejpb.2009.02.013
The use of Eudragit RS 100/cyclodextrin nanoparticles for the transmucosal administration of glutathione.
A. Lopedota (2009)
10.1016/s0021-9258(19)36601-3
Epidermal growth factor suppresses nitric oxide and hydrogen peroxide production by keratinocytes. Potential role for nitric oxide in the regulation of wound healing.
D. Heck (1992)



This paper is referenced by
10.1016/j.pharma.2016.09.001
Spray-dried microparticles of glutathione and S-nitrosoglutathione based on Eudragit® FS 30D polymer.
S. U. Shah (2017)
10.3390/md17050285
Edaravone-Loaded Alginate-Based Nanocomposite Hydrogel Accelerated Chronic Wound Healing in Diabetic Mice
Y. Fan (2019)
10.1007/s11051-017-3747-4
Nitric oxide-releasing nanoparticles: synthesis, characterization, and cytotoxicity to tumorigenic cells
M. T. Pelegrino (2017)
10.1039/C8AY01206G
Comparison between two derivatization methods of nitrite ion labeled with 15N applied to liquid chromatography-tandem mass spectrometry
Yu Hai-yan (2018)
10.3390/pharmaceutics12070618
Nitric Oxide-Releasing S-Nitrosoglutathione-Conjugated Poly(Lactic-Co-Glycolic Acid) Nanoparticles for the Treatment of MRSA-Infected Cutaneous Wounds
J. Lee (2020)
Mechanisms of S-nitrosothiols intestinal permeability and NO store formation within vascular wall to improve NO oral delivery systems
Y. Zhou (2019)
10.1016/j.niox.2016.09.010
Nitric oxide-releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants.
H. C. Oliveira (2016)
Étude de la biodisponibilité orale du S-nitrosoglutathion au moyen de modèles de la barrière intestinale par chromatographie en phase liquide couplée à la spectrométrie de masse après marquage par l’isotope 15 de l’azote
Haiyan Yu (2018)
10.22533/AT.ED.01919030433
ESTUDO DA ESTABILIDADE TÉRMICA DE FILMES POLIMÉRICOS CONSTITUÍDOS DE POLI (3-HIDROXIBUTIRATO) E PROPILENOGLICOL CONTENDO O FÁRMACO S-NITROSOGLUTATIONA
Regina Inêz Souza (2019)
10.1002/jbm.a.35464
Nitric oxide-eluting scaffolds and their interaction with smooth muscle cells in vitro.
M. Parent (2015)
10.1016/j.actbio.2019.12.016
ROS and GSH-responsive S-nitrosoglutathione functionalized polymeric nanoparticles to overcome multidrug resistance in cancer.
W. Wu (2019)
Synthèse de double donneurs de monoxyde d’azote, évaluation de leur cytotoxicté et de leur activité pharmacologique
Tanya Sahyoun (2019)
Inflammation and oxidative stress in atherosclerosis : role of S-nitrosothiols in the vascular responses
E. Belcastro (2016)
10.1016/j.nano.2016.05.006
Polymer nanocomposites enhance S-nitrosoglutathione intestinal absorption and promote the formation of releasable nitric oxide stores in rat aorta.
W. Wu (2016)
10.1038/s41598-019-54030-3
Effects of nitric oxide-releasing nanoparticles on neotropical tree seedlings submitted to acclimation under full sun in the nursery
P. J. Lopes-Oliveira (2019)
10.1515/hsz-2017-0150
Regulation of protein function by S-nitrosation and S-glutathionylation: processes and targets in cardiovascular pathophysiology
E. Belcastro (2017)
Polymeric formulations for innovative drug delivery systems of nitric oxide in the treatment of inflammatory bowel diseases: formulation and bioavailability assessment
Shefaat Ullah Shah (2015)
10.2174/1381612825666190701153903
Selenium donors at the junction of inflammatory diseases.
Rama Alhasan (2019)
10.3390/PROCEEDINGS2019011015
Antioxidant Properties of S-Nitrosoglutathione and Nanotechnologies
Marianne Parent (2019)
10.3390/antiox7040046
Polymeric Nanoparticles for Increasing Oral Bioavailability of Curcumin
A. Umerska (2018)
10.1016/j.bcp.2018.06.018
Intestinal absorption of S‐nitrosothiols: Permeability and transport mechanisms
J. Bonetti (2018)
10.1016/j.ijpharm.2015.08.074
Polymer nanocomposite particles of S-nitrosoglutathione: A suitable formulation for protection and sustained oral delivery.
W. Wu (2015)
Développement de formulations polymériques de S-nitrosoglutathion comme traitement per os pour prévenir les maladies inflammatoires chroniques de l’intestin
Hui Ming (2017)
10.3390/PROCEEDINGS2019011014
Nano or Micro: 3 Different Particles to Deliver and Protect S-Nitrosoglutathione for Oral Route Administration
Yi Zhou (2019)
10.1016/j.niox.2020.08.001
Challenging development of storable particles for oral delivery of a physiological nitric oxide donor.
Y. Zhou (2020)
10.1002/mabi.202000248
S-Nitrosoglutathione-Based Nitric Oxide-Releasing Nanofibers Exhibit Dual Antimicrobial and Antithrombotic Activity for Biomedical Applications.
Megan E. Douglass (2020)
10.1016/j.niox.2017.07.004
Oxidative stress enhances and modulates protein S-nitrosation in smooth muscle cells exposed to S-nitrosoglutathione.
E. Belcastro (2017)
Étude toxicologique de nanoparticules polymériques véhicules de S-nitrosoglutathion
Ramia Safar (2015)
10.1080/03639045.2018.1546313
Encapsulation of S-nitrosoglutathione: a transcriptomic validation
Ramia Safar (2019)
10.1016/j.niox.2016.06.006
In vivo pharmacological activity and biodistribution of S-nitrosophytochelatins after intravenous and intranasal administration in mice
Lamia Heikal (2016)
10.1016/j.biocel.2016.07.003
S-Nitrosothiols-NO donors regulating cardiovascular cell proliferation: Insight into intracellular pathway alterations.
M. Rychter (2016)
Semantic Scholar Logo Some data provided by SemanticScholar