Online citations, reference lists, and bibliographies.
← Back to Search

Dopamine: Acid‐base Properties And Membrane Penetration Capacity

Arash Mirzahosseini, Tamás Pálla, G. Orgován, G. Tóth, B. Noszál
Published 2018 · Chemistry, Medicine

Save to my Library
Download PDF
Analyze on Scholarcy
Share
HIGHLIGHTSThe complete set of protonation constants determined for dopamine.1H NMR method and auxiliary compounds used to determine microscopic constants.Protonation species populations reflect physico‐chemical behavior of catecholamines. ABSTRACT Dopamine and 4 related compounds were studied by 1H NMR‐pH titrations and a case‐tailored evaluation method. The resulting acid‐base properties of dopamine are quantified in terms of 3 macroscopic and 12 microscopic protonation constants and the concomitant 3 interactivity parameters. The species‐ and site‐specific basicities are interpreted by means of inductive and shielding effects through various intra‐ and intermolecular comparisons. The site‐specific basicities determined this way are key parameters for the prediction of pharmacokinetic behavior and receptor‐binding at the molecular level.
This paper references
10.1248/CPB.26.74
Microscopic Acid Dissociation Constants of 3, 4-Dihydroxyphenethylamine (Dopamine)
T. Ishimitsu (1978)
10.1007/s00249-013-0921-1
Site-specific basicities regulate molecular recognition in receptor binding: in silico docking of thyroid hormones
G. Tóth (2013)
10.1515/zpch-1926-12128
Zur Abschätzung der Zwitterionenmenge in Ampholytlösungen
L. Ebert (1926)
10.1002/chin.197949083
COMPLEXES OF 3,4-DIHYDROXYPHENYL DERIVATIVES. III. EQUILIBRIUM STUDY OF PARENT AND SOME MIXED LIGAND COMPLEXES OF DOPAMINE, ALANINE AND PYROCATECHOL WITH NICKEL(II), COPPER(II) AND ZINC(II) IONS
T. Kiss (1979)
10.1002/JPS.2600750117
A potentiometric study of lithium complexation with catecholamines.
B. Sandmann (1986)
10.1016/0162-0134(93)80019-6
Equilibrium and structural studies of silicon(IV) and aluminum(III) in aqueous solution. 31. Aqueous complexation between silicic acid and the catecholamines dopamine and L-DOPA
I. F. Sedeh (1993)
Thermodynamic studies on complexation of dopamine with gadolinium ( III ) in water - ethanol system
Bagheri (2003)
10.1016/0022-1902(74)80741-4
Complexes of adrenaline and related compounds with Ni2+, Cu2+, Zn2+, Cd2+ and Pb2+
Branka Grgas-Kužnar (1974)
10.1016/J.ACA.2004.07.005
1H/31P NMR pH indicator series to eliminate the glass electrode in NMR spectroscopic pKa determinations
Z. Szakács (2004)
10.3891/ACTA.CHEM.SCAND.27-2075
A comparative study on the ionization of catechol amines in aqueous solutions.
P. J. Antikainen (1973)
10.1016/S0277-5387(00)84736-1
Complexes of iron(III) with ligands of biological interest: dopamine and 8-hydroxyquinoline-5-sulphonic acid
C. G'erard (1994)
10.1021/J100686A021
Zwitterion formation upon deprotonation in L-3, 4-dihydroxyphenylalanine and other phenolic amines.
Martin Rb (1971)
10.1111/J.1476-5381.1954.TB00866.X
The importance of ionization in the activity of sympathomimetic amines.
G. Lewis (1954)
10.1016/S0020-1693(00)89367-6
Complexes of 3,4-dhydroxyphnyl derivatives, III. Equilibrium study of parent and some mixed ligand complexes of dopamine, alanine and pyrocatechol with nickel(II), copper(II) and zinc(II) ions
T. Kiss (1979)
10.1016/j.jpba.2010.11.022
Electrodeless, accurate pH determination in highly basic media using a new set of (1)H NMR pH indicators.
G. Orgován (2011)
10.1515/zpch-1923-10615
Dissoziationskonstanten von mehrbasischen Säuren und ihre Anwendung zur Berechnung molekularer Dimensionen
N. Bjerrum (1923)
The importance of ionization in the activity of sympathomimetic amines
Lewis
10.1016/0014-5793(76)80545-5
Nmr studies of catecholamines. Acid dissociation equilibria in aqueous solutions
J. Granot (1976)
10.1023/A:1019133927929
Protonation microequilibrium treatment of polybasic compounds with any possible symmetry
Z. Szakács (1999)
10.1016/S0006-3061(00)80208-2
Coordination of biogenic amines with synaptosomal and vesicular metal ions: equilibrium and spectral studies in model systems.
K. Rajan (1976)
10.1016/J.MOLLIQ.2010.07.002
Thermodynamic studies on complexation of dopamine with gadolinium(III) in water–ethanol system
A. B. Gh. (2010)
10.1021/j100686a021
Zwitterion formation upon deprotonation in L-3, 4-dihydroxyphenylalanine and other phenolic amines.
R. Martin (1971)
10.1016/S1386-1425(03)00138-0
Spectrophotometric study on the stability of dopamine and the determination of its acidity constants.
A. E. Sánchez-Rivera (2003)
Microscopic acid - base equilibria of a Figsynthetic hydroxamate regulate molecular recognition in receptor binding : in silico docking of thyroid hormones
M. A. Esteves (1926)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar