Online citations, reference lists, and bibliographies.

Mathematical Analysis Of Trabecular 'trajectories' In Apparent Trajectorial Structures: The Unfortunate Historical Emphasis On The Human Proximal Femur.

J. Skedros, Sidney L Baucom
Published 2007 · Biology, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
Wolff's "law" of the functional adaptation of bone is rooted in the trajectory hypothesis of cancellous bone architecture. Wolff often used the human proximal femur as an example of a trajectorial structure (i.e. arched trabecular patterns appear to be aligned along tension/compression stress trajectories). We examined two tenets of the trajectory hypothesis; namely, that the trabecular tracts from the tension- and compression-loaded sides of a bending environment will: (1) follow 'lines' (trajectories) of tension/compression stress that resemble an arch with its apex on a neutral axis, and (2) form orthogonal (90 degrees ) intersections. These predictions were analysed in proximal femora of chimpanzees and modern humans, and in calcanei of sheep and deer. Compared to complex loading of the human femoral neck, the chimpanzee femoral neck reputedly receives relatively simpler loading (i.e. temporally/spatially more consistent bending), and the artiodactyl calcaneus is even more simply loaded in bending. In order to directly consider Wolff's observations, measurements were also made on two-dimensional, cantilevered beams and curved beams, each with intersecting compression/tension stress trajectories. Results in the calcanei showed: (1) the same nonlinear equation best described the dorsal ("compression") and plantar ("tension") trabecular tracts, (2) these tracts could be exactly superimposed on the corresponding compression/tension stress trajectories of the cantilevered beams, and (3) trabecular tracts typically formed orthogonal intersections. In contrast, trabecular tracts in human and chimpanzee femoral necks were non-orthogonal (mean approximately 70 degrees ), with shapes differing from trabecular tracts in calcanei and stress trajectories in the beams. Although often being described by the same equations, the trajectories in the curved beams had lower r(2) values than calcaneal tracts. These results suggest that the trabecular patterns in the calcanei and stress trajectories in short beams are consistent with basic tenets of the trajectory hypothesis while those in human and chimpanzee femoral necks are not. Compared to calcanei, the more complexly loaded human and chimpanzee femoral necks probably receive more prevalent/predominant shear, which is best accommodated by non-orthogonal, asymmetric trabecular tracts. The asymmetrical trabecular patterns in the proximal femora may also reflect the different developmental 'fields' (trochanteric vs. neck/head) that formed these regions, of which there is no parallel in the calcanei.
This paper references
10.1177/107110070002100204
Internal Architecture of the Calcaneus: Implications for Calcaneus Fractures
F. Sabry (2000)
10.2106/00004623-195537010-00007
The internal architecture of the femur and its clinical significance; the upper end.
W. J. Tobin (1955)
10.1016/S0021-9290(97)00052-3
Cancellous bone architecture: advantages of nonorthogonal trabecular alignment under multidirectional joint loading.
R. Pidaparti (1997)
10.1002/jor.1100130406
Three-dimensional anatomy of the cancellous structures within the proximal femur from computed tomography data.
R. P. Elke (1995)
10.1515/9783110875676.13
A Noteworthy Meeting of the Society for Nature Research in Zurich Two Important Precursors of Julius Wolff: Carl Culmann and Hermann von Meyer
B. Rüttimann (1992)
Locomotion dependent variation in the proximal femoral trabecular pattern in primates
T. Viola (2002)
10.1007/978-1-4419-6856-2_13
Biomechanical Aspects of Growth and Tissue Engineering
Y. Fung (1990)
The Wolff’s law debate: throwing water out, but keeping the baby
B. M. Holt (2004)
Der gegenwärtige stand der lehre von der knochen - aechitecur
C. M. Stanford (1999)
10.1111/J.0021-8782.2004.00292.X
Locomotion in bonobos (Pan paniscus): differences and similarities between bipedal and quadrupedal terrestrial walking, and a comparison with other locomotor modes.
K. D'Août (2004)
10.1097/00003086-198110000-00002
Patterns of deformity of the developing hip.
R. Siffert (1981)
10.1016/0003-9969(94)00173-9
A stereological study of trabecular architecture in the mandibular condyle of the pig.
S. Teng (1995)
10.1002/aja.1000210202
The laws of bone architecture
J. C. Koch (1917)
The Law of Bone Remodeling
J. Wolff (1986)
10.1016/0021-9290(93)90058-M
Hip joint loading during walking and running, measured in two patients.
G. Bergmann (1993)
10.1002/(SICI)1097-0185(19990615)257:3<110::AID-AR8>3.0.CO;2-2
Biomechanics of total hip arthroplasty
L. A. Lim (1999)
William Fairbairn. In: The Dictionary of National Biography
L. Stephen (1964)
10.1097/00003086-196801000-00014
An Atlas of the Comparative Anatomy of the Upper End of the Femur: PART I Further Evidence and Confirmation of Wolff??s Law of Bone Transformation
W. J. Tobin (1968)
Some historical remarks of the theory of cancellous bone structure (Wolff’s Law)
H. Roesler (1981)
10.2106/00004623-199909000-00033
Shear Strength of the Physis Varies with Anatomic Location and is a Function of Modulus, Inclination, and Thickness
J. Williams (1999)
10.1017/CBO9781107325852.012
On Growth and Form: On Form and Mechanical Efficiency
D. W. Thompson (1992)
Cellular Solids: Structure and Properties
L. J. Gibson (1997)
Hip development and vascularity: relationship to chondro-osseous trauma in the growing child.
Ogden Ja (1981)
10.1016/0021-9290(88)90257-6
Limitations of the continuum assumption in cancellous bone.
T. Harrigan (1988)
10.1148/radiology.137.1.7422864
The development of the upper end of the femur, with special reference to its internal architecture.
D. Osborne (1980)
10.1016/0020-1383(95)00079-O
Finite element analysis of the stress distributions in the proximal end of the femur after stabilization of a pertrochanteric model fracture: a comparison of two implants.
E. Sim (1995)
10.1016/B978-012470862-4/50019-2
Inhibition of Osteopenia by Biophysical Intervention
C. Rubin (2001)
10.1201/b14263-20
Strength of Trabecular Bone
T. M. Keaveny (2001)
Trabecular bone structure in human and chimpanzee knee joints
B. G. Richmond (2004)
Der gegenwärtige stand der lehre von der knochen - aechitecur
C. M. Stanford (1999)
10.1097/00007632-199712151-00005
Biomechanics of osteoporosis and vertebral fracture.
E. Myers (1997)
10.1016/S0021-9290(03)00126-X
Strain-derived canalicular fluid flow regulates osteoclast activity in a remodelling osteon--a proposal.
E. Burger (2003)
10.1007/BF02946474
Bone remodelling: Should we cry wolff?
T. C. Lee (1999)
10.1016/0021-9290(87)90029-7
Trabecular bone remodeling around smooth and porous implants in an equine patellar model.
E. Cheal (1987)
Intertrochanteric fractures. In: McCollister, E. (Ed.), Surgery of the Musculoskeletal System
G. Laros (1990)
Bone remodeling: should we cry Wolff? Ir
T. C. Lee (1999)
Bone biodynamics in orthodontic and orthopedic treatment
D. S. Carlson (1992)
Biomechanical aspects of the hip joint.
Morris Jm (1971)
10.1146/ANNUREV.BIOENG.3.1.307
Biomechanics of trabecular bone.
T. M. Keaveny (2001)
10.1016/S8756-3282(02)00947-X
Trabecular minimodeling in human iliac bone.
S. Kobayashi (2003)
10.1002/AJPA.1089
Three-dimensional analysis of nonhuman primate trabecular architecture using micro-computed tomography.
R. Fajardo (2001)
Die architectur der tibia
E. Albert (1900)
10.1002/jor.1100080506
An approach for time-dependent bone modeling and remodeling--theoretical development.
G. Beaupré (1990)
10.1002/jor.1100100214
The microstructural tensile properties and biochemical composition of the bovine distal femoral growth plate.
B. Cohen (1992)
Experimental support for the trajectorial theory of bone structure.
L. Lanyon (1974)
A new explanation of the cancellous bone architecture.
J. Heřt (1992)
10.1007/BF01774009
Study of the intraosseous vessels of the femoral head in patients with fractures of the femoral neck or osteoarthritis of the hip
M. Laroche (2005)
10.2106/00004623-197658010-00017
Shear strength of the human femoral capital epiphyseal plate.
S. M. Chung (1976)
10.1148/10.3.234
STUDIES IN THE DYNAMICS OF HISTOGENESIS
E. J. Carey (1920)
How do tissues respond and adapt to stresses around a prosthesis? A primer on finite element stress analysis for orthopaedic surgeons.
R. Brand (2003)
Die architectur der tibia
E. Albert (1900)
10.1006/JHEV.2000.0424
Cortical bone distribution in the femoral neck of strepsirhine primates.
B. Demes (2000)
10.1001/jama.1995.03530060084045
Diagnosis of Bone and Joint Disorders
L. Peltier (1988)
10.1001/archsurg.1975.01360070041008
Subtrochanteric fractures of the femur.
M. Shelton (1975)
10.1016/0021-9290(96)00062-0
The dependence of shear failure properties of trabecular bone on apparent density and trabecular orientation.
C. M. Ford (1996)
10.4159/harvard.9780674184404
Functional vertebrate morphology
M. Hildebrand (1985)
10.1016/S8756-3282(98)00031-3
Impact of spatial resolution on the prediction of trabecular architecture parameters.
M. Kothari (1998)
A model of bone
H. Rodrigues (1999)
10.1097/00000441-196502000-00053
The laws of bone structure
H. Frost (1965)
Beyond biometrics: studies of complex biological patterns
C. E. Oxnard (1981)
Collagen fiber orientation : a characteristic of strain - mode - related regional adaptation in cortical
J. G. Skedros (2001)
10.1016/0021-9290(92)90240-2
On Wolff's law of trabecular architecture.
C. H. Turner (1992)
Effects of physical inactivity, paralysis, and weightlessness on bone growth
G. D. Whedon (1993)
Biomechanics of the Normal and Diseased Hip: Theoretical Foundation, Technique and Results of Treatment. an Atlas
Friedrich Pauwels (1976)
To what extent can the mechanical environment of a bone be inferred from its internal architecture ?
R. H. Crompton (1995)
10.1007/978-3-642-88443-6
The Rationale Of Operative Fracture Care
J. Schatzker (1987)
10.1007/BF01944490
Ueber die innere Architectur der Knochen und ihre Bedeutung für die Frage vom Knochenwachsthum
D. J. Wolff (2005)
Prediction of the strength of the neck of femur from its radiological appearance.
J. Phillips (1975)
10.1073/PNAS.96.15.8795
Oreopithecus was a bipedal ape after all: evidence from the iliac cancellous architecture.
L. Rook (1999)
10.1002/JOR.1100150620
In vivo measurements show tensile axial strain in the proximal lateral aspect of the human femur.
A. Aamodt (1997)
10.1302/0301-620X.84B6.11994
Mutual associations among microstructural, physical and mechanical properties of human cancellous bone.
M. Ding (2002)
10.1016/S0021-9290(96)00189-3
Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations.
C. Jacobs (1997)
A quantitative estimation of the divergence between the trabecular system and the stress trajectories in the upper end of the human femoral bone.
D. Venieratos (1987)
10.1073/pnas.83.9.2879
Contact pressures in the human hip joint measured in vivo.
W. Hodge (1986)
10.1007/BF00352551
Biomechanics important to interpret radiographs of the hip
D. Rosenthal (1983)
Biomechanical aspects of the hip joint.
J. Morris (1971)
10.1080/10255849908907982
A Model of Bone Adaptation Using a Global Optimisation Criterion Based on the Trajectorial Theory of Wolff.
P. Fernandes (1999)
Is there a Wolff's law for connective tissue?
A. Arem (1974)
Kebara 2 Neanderthal
M.W (1995)
Fundamentals of Anatomy and Physiology
F. Martini (1997)
10.1002/AJPA.10111
The Maka femur and its bearing on the antiquity of human walking: applying contemporary concepts of morphogenesis to the human fossil record.
C. Lovejoy (2002)
On form and mechanical efficiency. In: On Growth and Form
D. W. Thompson (1943)
On Boneformation: Its Relation to Tension and Pressure
Murk Jansen (2009)
Surgery of the musculoskeletal system
C. Evarts (1983)
10.1007/978-1-4899-5391-9
Skeletal biomineralization : patterns, processes, and evolutionary trends
J. Carter (1991)
10.1007/BF01774015
Stress distributions within the proximal femur during gait and falls: Implications for osteoporotic fracture
J. C. Lotz (2005)
[Considerations on some problems of osseous physiopathology in relation to a photoelastic study of the femur].
L. Barbieri (1975)
10.1136/bmj.1.6054.171-a
Femoral neck fractures.
M. Roburn (1964)
10.1002/JMOR.10315
Angular orientation of trabecular bone in the femoral head and its relationship to hip joint loads in leaping primates.
T. Ryan (2005)
10.1002/(SICI)1097-4636(19980605)40:3<475::AID-JBM19>3.0.CO;2-I
Comparison of human, primate, and canine femora: implications for biomaterials testing in total hip replacement.
T. Y. Kuo (1998)
10.1097/01.RLI.0000059542.90854.EF
Measurement of Femoral Anteversion by Biplane Radiography and Computed Tomography Imaging: Comparison With an Anatomic Reference
Tony Y. KUO (2003)
To what extent can the mechanical environment of a bone be inferred from its internal architecture? In: Thomason, J.J. (Ed.), Functional Vertebrate Morphology in Vertebrate Paleontology
J. J. Thomason (1995)
10.1046/J.1469-7580.2000.19720145.X
If bone is the answer, then what is the question?
R. Huiskes (2000)
10.1359/JBMR.040124
Cortical bone in the human femoral neck: three-dimensional appearance and porosity using synchrotron radiation.
V. Bousson (2004)
10.2106/00004623-198163050-00013
The effect of prolonged physical training on the properties of long bone: a study of Wolff's Law.
S. Woo (1981)
10.1002/ajpa.1330430107
The ischium and hip extensor mechanism in human evolution.
H. Mchenry (1975)
10.1002/ajpa.1330200109
Chimpanzee and human feet in bipedal walking
H. Elftman (1935)
10.1017/CBO9780511574993.002
Skeletal Function and Form: Form and Function
D. Carter (2000)
10.1136/jcp.37.12.1419-c
Atlas of Orthopaedic Pathology with Clinical and Radiologic Correlations
G. Slavin (1984)
10.1002/jor.1100140319
Curved beam model of the proximal femur for estimating stress using dual-energy X-ray absorptiometry derived structural geometry.
F. Mourtada (1996)
10.1201/B14263
Bone mechanics handbook
S. Cowin (2001)
10.1016/0021-9290(87)90020-0
The history of some fundamental concepts in bone biomechanics.
Hugo Roesler (1987)
10.1016/s0022-3913(03)00274-9
Mandibular growth following implant restoration: does Wolff's law apply to residual ridge resorption?
M. Reddy (2002)
10.1002/JBMR.5650110203
A new model for the regulation of bone resorption, with particular reference to the effects of bisphosphonates.
A. Parfitt (1996)
10.1002/ajpa.1330280513
Application of in vivo bone strain measurement techniques to problems of skeletal adaptations
M. Bouvier (1985)
Intermediary Organization of the Skeleton I and II
H. M. Frost (1986)
Biomechanics of the Hip: As Applied to Osteoarthritis and Related Conditions
P. Maquet (1984)
10.1001/jama.1977.03270320062033
Menders of the Maimed: The Anatomical and Physiological Principles Underlying the Treatment of Injuries to Muscles, Nerves, Bones, and Joints
R. Cooper (1977)
10.1093/nq/s6-vii.159.21a
The new dictionary of national biography
L. Stephen (1883)
Is there a Wolff's law for connective tissue?
Arem Aj (1974)
10.1002/ar.1092260404
Skeletal structural adaptations to mechanical usage (SATMU): 3. The hyaline cartilage modeling problem
H. Frost (1990)
The relationship of epiphysial plates to stress in some bones of the lower limb
J. W. Smith (1962)
10.1016/0021-9290(73)90036-5
Analysis of surface bone strain in the calcaneus of sheep during normal locomotion. Strain analysis of the calcaneus.
L. Lanyon (1973)
10.1007/978-3-642-77380-8_3
Screws and Plates and Their Application
J. Schatzker (1992)
10.1016/J.GAITPOST.2004.06.010
The natural history of human gait and posture. Part 2. Hip and thigh.
C. Lovejoy (2005)
Pre- and post-natal development of the hip
T. M. Ganey (1998)
10.1007/978-1-4899-1810-9_62
The role of prostaglandins and nitric oxide in the response of bone to mechanical stimulation.
T. Chambers (1997)
10.1007/978-1-4612-5224-5_5
Biomechanics of the Hip
V. Frankel (1984)
10.1515/9781400853724
The Mechanical Adaptations of Bones
J. Currey (1984)
Clinically Oriented Anatomy
K. Moore (1985)
10.1097/00004424-199001000-00004
Predicting femoral neck strength from bone mineral data. A structural approach.
T. J. Beck (1990)
10.1016/S8756-3282(02)00828-1
Collagen fiber orientation in the femoral necks of apes and humans: do their histological structures reflect differences in locomotor loading?
J. K. Kalmey (2002)
A neutron diffraction study of the bones of the foot.
G. Bacon (1984)
The structure and stress relations of fibrous epiphysial plates.
J. W. Smith (1962)
10.1016/S0021-9290(01)00192-0
Trabecular bone adaptation with an orthotropic material model.
Z. Miller (2002)
10.1016/8756-3282(95)00213-W
Evidence of strain-mode-related cortical adaptation in the diaphysis of the horse radius.
M. Mason (1995)
10.1016/8756-3282(96)00116-0
Adaptive changes in trabecular architecture in relation to functional strain patterns and disuse.
A. Biewener (1996)
Functional aspects of the abductor muscles of the hip.
V. Inman (1947)
10.1016/S0140-6736(05)66870-5
Relation between age, femoral neck cortical stability, and hip fracture risk
Paul M. Mayhew (2005)
10.1007/BF02406141
Mechanical modeling of the stress adaptation process in bone
S. Cowin (2006)
Introduction. In: Murray, P.D.F. (Ed.), Bones
B. K. Hall (1985)
Biomechanical influences on skeletal growth and development
T. Skerry (2000)
Morphometric variation in proximal femoral development in primates and mammals
M. A. Kriz (2002)
Collagen fiber orientation: a characteristic of strainmode-related regional adaptation in cortical bone
J. G. Skedros (2001)
10.2106/00004623-194830010-00008
An anatomical study of the mechanics, pathology, and healing of fracture of the femoral neck; a preliminary report.
A. Farkas (1948)
Studies of the Development and Decay of the Human Frame. W.B
J. Trueta (1968)
Rockwood and Green's Fractures in Adults
C. Rockwood (1991)
10.2106/00004623-197860010-00010
Proximal strain distribution in the loaded femur. An in vitro comparison of the distributions in the intact femur and after insertion of different hip-replacement femoral components.
I. Oh (1978)
10.1016/S0021-9290(01)00040-9
Hip contact forces and gait patterns from routine activities.
G. Bergmann (2001)
10.1016/S0022-3913(99)70209-X
Toward an understanding of implant occlusion and strain adaptive bone modeling and remodeling.
C. Stanford (1999)
10.1016/0141-5425(89)90101-5
A mathematical analysis for the modelling of trabecular bone.
R. E. Field (1989)
10.1016/0021-9290(88)90008-5
On the dependence of the elasticity and strength of cancellous bone on apparent density.
J. Rice (1988)
10.2307/3607996
On growth and form i
D'arcy W. Thompson (1917)
The effect of osteoporosis on the mechanical properties of bone structures.
R. VanAudekercke (1994)
10.1016/S0021-9290(03)00123-4
Whither flows the fluid in bone?" An osteocyte's perspective.
M. Tate (2003)
10.1046/J.1469-7580.2001.19930345.X
Trabecular trajectory in the articular processes of the human fourth cervical vertebra.
M. Herrera (2001)
10.1242/jeb.01971
Trabecular bone in the bird knee responds with high sensitivity to changes in load orientation
H. Pontzer (2006)
10.1002/jor.1100090503
Pattern of bone loss of the proximal femur: a radiologic, densitometric, and histomorphometric study.
T. Kawashima (1991)
10.1007/BF02508641
Impact direction from a fall influences the failure load of the proximal femur as much as age-related bone loss
T. Pinilla (2006)
10.1097/00007632-199901010-00004
Measurement of strain distributions within vertebral body sections by texture correlation.
B. Bay (1999)
10.1097/01241398-198403000-00006
Biomechanical and Histological Correlations in Growth Plate Failure
C. Moen (1984)
Intertrochanteric fractures.
O. Hudson (1957)
10.1055/s-0028-1144106
Das Gesetz der Transformation der Knochen
J. Wolff (1893)
10.1002/AJPA.20371
Who's afraid of the big bad Wolff?: "Wolff's law" and bone functional adaptation.
C. Ruff (2006)
Die Architekur der Spongiosa
G. H. von Meyer (1867)
10.1016/0141-5425(89)90142-8
Trabecular structure compared to stress trajectories in the proximal femur and the calcaneus
J. V. Sloten (1988)
10.1201/b14263-18
Quantification of Cancellous Bone Architecture
A. Odgaard (2001)
A resolution restriction for Wolff's law of trabecular architecture.
Cowin Sc (1989)
10.5860/choice.27-5824
Reconstruction of Life from the Skeleton
M. Işcan (1989)
10.1148/13.2.127
Studies in the Dynamics of Histogenesis1
E. J. Carey
On Bone Formation: Its Relation to Tension and Pressure
M. Jansen (1920)
10.1038/35088122
Anabolism: Low mechanical signals strengthen long bones
C. Rubin (2001)
10.1359/JBMR.2003.18.10.1781
Trabecular bone tissue strains in the healthy and osteoporotic human femur.
B. van Rietbergen (2003)
10.1111/j.1469-185X.1991.tb01142.x
THE ‘LAW OF BONE TRANSFORMATION’: A CASE OF CRYING WOLFF?
J. Bertram (1991)
The cellular basis of Wolff's law. Transduction of physical stimuli to skeletal adaptation.
C. Rubin (1988)
10.1016/S0883-5403(06)80033-1
Roentgenographic procedure for selecting proximal femur allograft for use in revision arthroplasty.
R. Bloebaum (1993)
10.1016/0021-9290(89)90091-2
Relationships between loading history and femoral cancellous bone architecture.
D. Carter (1989)
10.1016/0021-9290(83)90107-0
Bone stress in the horse forelimb during locomotion at different gaits: a comparison of two experimental methods.
A. Biewener (1983)
The surface anatomy, internal structure, and external morphology of the mammalian proximal femur with special reference to its developmental biology. Anthropology, Kent State, Kent Ohio
M. A. Kriz (2002)
10.1515/9783110875676.1
Julius Wolff and the Law of Bone Remodelling
H. Zippel (1992)
Collagen fiber orientation in the proximal femur: challenging Wolff’s tension/ compression interpretation
J. G. Skedros (1999)
10.1002/ajpa.1330500409
Correlates between locomotor anatomy and behavior in two sympatric species of Lemur
S. C. Ward (1979)
Hip bone
R. 85–109. Macchiarelli (1999)
The Wolff’s law debate: throwing water out, but keeping the baby
B. M. Holt (2004)
The mechanical properties of bone.
F. G. Evans (1969)
10.1111/J.1741-2358.2004.00006.X
Functional behaviour of bone around dental implants.
C. Stanford (2004)
10.2106/00004623-198466070-00008
Bone-mineral content in the lower limb. Relationship to cross-sectional geometry.
C. Ruff (1984)
10.1016/J.JBIOMECH.2004.02.045
Mechanisms of uniformity of yield strains for trabecular bone.
Harun H. Bayraktar (2004)
Handbook Of Fractures
K. Egol (2002)
10.1016/0021-9290(84)90035-6
A contact-coupled finite element analysis of the natural adult hip.
T. Brown (1984)
10.1002/jor.1100040106
Computerized tomography of proximal femoral trabecular patterns.
R. Kerr (1986)
10.2106/00004623-198870010-00008
Telemetric force measurements across the hip after total arthroplasty.
D. Davy (1988)
Biomechanics of the proximal femur: role of bone distribution and architecture. Mechanical Engineering, University of California at Berkeley
J. C. Fox (2003)
The skeletal adaptation to mechanical usage in the rat
W.S.S. Jee (1991)
Strength of biological materials
H. Yamada (1970)
Die Architektur der knochenspongiosa in neuer Auffassung
H. Triepel (1922)
Trabecular bone adaptation
PA Philadelphia (2002)
Scanning electron microscopic analysis of regional histomorphological variations within the physis of the primate proximal femur
P. L. Reno (2002)
10.1111/J.0021-8782.2004.00289.X
Bipedal animals, and their differences from humans.
R. M. Alexander (2004)
10.1242/jeb.00279
Insights into the evolution of human bipedalism from experimental studies of humans and other primates
D. Schmitt (2003)
10.1016/S0021-9290(00)00110-X
Analysis of a femoral hip prosthesis designed to reduce stress shielding.
M. G. Joshi (2000)
10.1016/8756-3282(94)00039-3
Interruption of disuse by short duration walking exercise does not prevent bone loss in the sheep calcaneus.
T. Skerry (1995)
Einführung in das studium der architektur der röhrenknochen
E. Albert (1900)
Beiträge zur lehre von der heilung der fracturen
J. Wolff (1874)
Developmental coxa vara. In: Pediatric orthopedics
M. O. Tachdjian (1990)
10.1016/B978-0-12-119201-3.50016-0
CHAPTER 9 – Bone as a Mechanical Engineering Problem
A. Ascenzi (1972)
10.2106/00004623-199406000-00020
Fractures of the proximal part of the femur.
R. Kyle (1994)
Der spongiosabau der oberen extremität
K. Büdinger (1903)
Kinesiology and applied anatomy
P. Rasch (1989)
10.1302/0301-620x.82b5.0820777
Orthopaedic radiology: a practical approach.: 3rd Edition. Edited by A. Greenspan. Pp 962. Philadelphia: Lippincott Williams & Wilkins, 2000. ISBN: 0-7817-1589-X. £136.00.
D. A. Ritchie (2000)
10.1016/0021-9290(95)00084-4
Mechanical validation of whole bone composite femur models.
L. Cristofolini (1996)
Locomotion in bonobos (Pan paniscus)
P. Aerts (2004)
10.1016/0002-9416(58)90096-4
The biochemistry and physiology of bone
G. H. Bourne (1956)
Manual of Internal Fixation: Techniques Recommended by the AO Group
M. Müller (1979)
The structure and stress relations of fibrous epiphysial plates.
Smith Jw (1962)
10.1359/JBMR.060102
Importance of individual rods and plates in the assessment of bone quality and their contribution to bone stiffness.
M. Stauber (2006)
Three-dimensional analysis of nonhuman
R. J. Fajardo (2001)
10.1302/0301-620X.30B4.595
DEVELOPMENTAL COXA VARA
A. B. L. Mesurier (1948)
Management of hip disorders in children
J. Katz (1983)
An atlas of the comparative anatomy of the upper end of the femur. I. Further evidence and confirmation of Wolff's Law of the femur. I. Further evidence and confirmation of Wolff's Law of Bone Transformation.
Tobin Wj (1968)
Review of Orthopaedics
M. D. Miller (2000)
10.1152/ajpendo.1995.269.3.E438
Mechanotransduction in bone: role of strain rate.
C. H. Turner (1995)
10.1002/jor.1100060120
Mechanical stresses and endochondral ossification in the chondroepiphysis.
D. Carter (1988)
10.1016/S0021-9290(02)00173-2
Functional adaptation of cancellous bone in human proximal femur predicted by trabecular surface remodeling simulation toward uniform stress state.
K. Tsubota (2002)
10.1126/science.178.4063.877
Chimpanzee Bipedalism: Cineradiographic Analysis and Implications for the Evolution of Gait
F. Jenkins (1972)
10.1097/00005373-197009000-00008
Wolff's law in relation to the healing skin wound.
J. Forrester (1970)
10.1002/jor.1100090515
An evaluation of three loading configurations for the in vitro testing of femoral strains in total hip arthroplasty.
J. Finlay (1991)
10.1016/S0021-9290(96)00060-7
Adaptation of bone to physiological stimuli.
S. Judex (1997)
The Relation of Structure and Function as illustrated by the Form of the Lower Epiphysial Suture of the Femur.
A. Thomson
Trabecular architecture of metacarpal heads in catarrhines: a preliminary report
M. Zylstra (2000)
Yield strains for bovine trabecular bone are isotropic but asymmetric
T. M. Keaveny (1994)
Hip Arthroplasty
R. B. Martin (1998)
10.1016/S0021-9290(97)00041-9
Pelvic muscle and acetabular contact forces during gait.
D. Pedersen (1997)
10.2106/00004623-197052030-00005
Changes in trabecular pattern of the upper end of the femur as an index of osteoporosis.
M. Singh (1970)
10.1111/J.1469-7580.2006.00503.X
Cortical bone development under the growth plate is regulated by mechanical load transfer.
E. Tanck (2006)
10.1038/104493a0
Menders of the Maimed: The Anatomical and Physiological Principles Underlying the Treatment of Injuries to Muscles, Nerves, Bones, and Joints
A. Keith (1920)
Hip development and vascularity: relationship to chondro-osseous trauma in the growing child.
J. Ogden (1981)
Telemetric force
K. G. Heiple (1988)
The pelvis and hips
T. H. Berquist (1992)
Ontogeny of cancellous bone anisotropy in a natural ‘‘trajectorial structure’’: genetics or epigenetics
J. G. Skedros (2001)
Geometric analysis of a tension/ compression system: implications for femoral neck modeling
J. G. Skedros (1991)
Stress dependence of synovial joints
W. H. Akeson (1992)
Krafte an der hufte—das Unteergurtmodell
North Am (1987)
10.2106/00004623-199274070-00030
Practical Biomechanics for the Orthopaedic Surgeon. Ed. 2.
Albert H. Burstein (1992)
Wolff's Law.
Greer Rb rd (1993)
10.1007/BF02555177
Bone modeling during growth: Dynamic strain equilibrium in the chick tibiotarsus
A. Biewener (2007)
10.1006/JTBI.1999.1025
A chondral modeling theory revisited.
M. Hamrick (1999)
10.1359/JBMR.2003.18.12.2200
Interrelationships between structural parameters of cancellous bone reveal accelerated structural change at low bone volume.
I. H. Parkinson (2003)
10.1002/JMOR.10167
Relationships of loading history and structural and material characteristics of bone: development of the mule deer calcaneus.
J. Skedros (2004)
10.1359/JBMR.2003.18.4.760
Microarchitectural and physical changes during fetal growth in human vertebral bone.
S. Nuzzo (2003)
10.1002/ar.1092390406
Analysis of a tension/compression skeletal system: Possible strain‐specific differences in the hierarchical organization of bone
J. Skedros (1994)
10.1002/ajpa.1330600308
Cross-sectional geometry of Pecos Pueblo femora and tibiae--a biomechanical investigation: I. Method and general patterns of variation.
C. Ruff (1983)
10.1302/0301-620X.43B3.576
THE STRUCTURE AND FUNCTION OF THE PROXIMAL END OF THE FEMUR
R. Garden (1961)
10.1097/00000441-190212000-00003
WOLFFS LAW AND THE FUNCTIONAL PATHOGENESIS OF DEFORMITY
Albert H. Freiberg (1902)
The Physiology of Joints: Lower Limb
I. Kapandji (1987)
Was Wolff Correct
D. CurreyJohn (1998)
10.1017/CBO9781139878326.013
Cellular Solids: Cancellous bone
L. J. Gibson (1997)
10.1007/BF00435446
Stress in the human ankle joint: A brief review
B. Tillmann (1985)
Bone-mineral content in lower limb
C. B. Ruff (1984)
10.1097/01241398-199001000-00027
Principles of Orthopaedic Practice
R. Dee (1989)
10.1038/35015116
Effects of mechanical forces on maintenance and adaptation of form in trabecular bone
R. Huiskes (2000)
Loading conditions and cortical bone construction of an artiodactyl calcaneus.
S. C. Su (1999)
The proximal end of the femur: investigations with special reference to the etiology of femoral neck fractures; anatomical studies; roentgen projections; theoretical stress calculations; experimental production of fractures.
S. Backman (1957)
Hyphenated history: the Hueter-Volkmann law.
C. Mehlman (1997)
10.1016/0021-9290(89)90074-2
Mathematical modelling of trabecular bone structure: the evaluation of analytical and quantified surface to volume relationships in the femoral head and iliac crest.
N. Fazzalari (1989)
[Mechanical loading of the human femoral neck].
J. Heřt (2001)
10.1055/s-0038-1633151
Structural Adaptations to Mechanical Usage. A Proposed “Three-Way Rule” for Bone Modeling: Part II
H. Frost (1988)
10.4159/harvard.9780674184404.c1
Chapter 1. Functional Adaptation in Skeletal Structures
L. Lanyon (1985)
Correspondence of trabecular and cortical geometries: a natural test of Wolff’s Law
M. D. Black (2004)
Microstructure andMineral Content Correlations to Strain Parameters in Cortical Bone of the Artiodactyl Calcaneus
S. C. Su (1998)
10.1007/978-1-4612-5224-5_3
The Anatomy of the Hip Joint
M. Harty (1984)
10.14195/2182-7982_19_2
Skeletal markers of occupational stress in the toes : a case report from Alcabideche (Cascais, Portugal)
H. Cardoso (2002)
The relationship of epiphysial plates to stress in some bones of the lower limb.
J. W. Smith (1962)
Kinesiology: The Mechanics and Pathomechanics of Human Movement
Carol A Oatis (2003)
Theoretical and empirical scaling patterns and topological homology in bone trabeculae.
S. Swartz (1998)
Pre- and post-natal development of the hip
T. M. Ganey (1998)
10.1097/00007632-200301150-00006
Micro-Computed Tomography Evaluation of Trabecular Bone Structure on Loaded Mice Tail Vertebrae
A. Issever (2003)
10.1002/AJHB.10197
Quantifying trabecular orientation in the pelvic cancellous bone of modern humans, chimpanzees, and the Kebara 2 Neanderthal
M. Martinón-Torres (2003)
10.1007/b97655
Skeletal Injury in the Child
J. Ogden (1982)
10.1097/00005131-199004020-00005
A Biomechanical Analysis of the Sliding Hip Screw: The Question of Plate Angle
R. Meislin (1990)
10.1016/0021-9290(87)90030-3
Adaptive bone-remodeling theory applied to prosthetic-design analysis.
R. Huiskes (1987)
10.1016/S0736-0266(01)00040-7
Tensile properties of the physis vary with anatomic location, thickness, strain rate and age.
James Laney Williams (2001)
Review of Wolff’s law and its proposed means of operation
R. W. Treharne (1981)
The Femoral Neck. Function, Fracture Mechanism, Internal Fixation. An experimental study. By
V. Frankel (1960)
Mathematical analysis of trabecular trajectories in apparent trajectorial structures: the unfortunate historical emphasis on the human proximal femur
J. G. Skedros (2002)
10.1115/1.2798051
Application of the Tsai-Wu quadratic multiaxial failure criterion to bovine trabecular bone.
T. M. Keaveny (1999)
The dependence of shear failure
C. M. 749–759. Ford (1996)
Ph
李幼升 (1989)
Imaging of orthopedic trauma
T. Berquist (1992)
10.1136/pgmj.44.516.820-b
Studies of the Development and Decay of the Human Frame
J. Trueta (1968)
10.1002/AR.B.10031
Circularly polarized light standards for investigations of collagen fiber orientation in bone.
T. Bromage (2003)
Scanning electron microscopic analysis of regional histomorphological variations within the physis of the primate proximal femur
P. L. Reno (2002)
10.3109/ort.1966.37.suppl-88.01
Forces acting on the femoral head-prosthesis. A study on strain gauge supplied prostheses in living persons.
N. Rydell (1966)
10.1002/(SICI)1096-8644(199910)110:2<179::AID-AJPA5>3.0.CO;2-Z
Dimensions and moment arms of the hind- and forelimb muscles of common chimpanzees (Pan troglodytes).
S. Thorpe (1999)
10.1016/S8756-3282(97)00121-X
Morphological and structural characteristics of the proximal femur in human and rat.
C. Bagi (1997)
10.1016/S0736-0266(01)00010-9
Contribution of disc degeneration to osteophyte formation in the cervical spine: a biomechanical investigation.
S. Kumaresan (2001)
10.1016/S0002-9343(98)00115-6
Fall direction, bone mineral density, and function: risk factors for hip fracture in frail nursing home elderly.
S. Greenspan (1998)
10.1103/PhysRevB.34.6295
Dynamics of structural phase transitions in highly anisotropic systems.
Kerr (1986)
10.2106/00004623-199610000-00010
Differentiation of the Bone-Tissue Remodeling Response to Axial and Torsional Loading in the Turkey Ulna*†
C. Rubin (1996)
10.1016/J.JBIOMECH.2005.02.007
Microdamage propagation in trabecular bone due to changes in loading mode.
Xiang Wang (2006)
10.1016/0021-9290(94)90214-3
A new attempt at the interpretation of the functional architecture of the cancellous bone.
J. Heřt (1994)
Toward a quantitative formulation of Wol5''s law in trabecular bone
W. Hayes (1981)
Human growth after birth
D. Sinclair (1985)
The effect of osteoporosis on the mechanical properties of bone structures
R. V. Audekercke (1993)
10.7326/0003-4819-12-9-1533_3
Bones: A Study of the Development and Structure of the Vertebrate Skeleton
P. D. Murray (1985)
The relationship of epiphysial plates to stress in some bones of the lower limb.
Smith Jw (1962)
10.1097/00007632-198403000-00005
Is the chemistry of collagen in intervertebral discs an expression of Wolff's Law? A study of the human lumbar spine.
D. Brickley-Parsons (1984)
A detailed comparison of experimental and theoretical stress-analysis of a human femur
Hwj Rik Huiskes (1983)
10.1115/1.3138584
Wolff's law of trabecular architecture at remodeling equilibrium.
S. Cowin (1986)
10.1017/CBO9780511601101
Biology of Fibrous Composites: Development beyond the Cell Membrane
A. C. Neville (1993)
10.1146/ANNUREV.ANTHRO.32.061002.093223
Developmental Biology and Human Evolution
C. Lovejoy (2003)
10.1006/JHEV.1998.0267
Hip bone trabecular architecture shows uniquely distinctive locomotor behaviour in South African australopithecines.
R. Macchiarelli (1999)
The Adult Hip
J. Callaghan (1997)



This paper is referenced by
10.1530/EJE-15-0931
Reduction of trabecular and cortical volumetric bone mineral density at the proximal femur in patients with acromegaly.
Elena Valassi (2016)
10.1007/S40846-017-0323-4
The Influence of Bone Modulus-density Relationships on Two-dimensional Human Proximal Femur Remodeling Results
Wen-ting Yang (2018)
Eficacia de injertos de hueso xenogénicos en bloque para la regeneración ósea horizontal de la cresta ósea alveolar atrófica
Alberto Ortiz Vigón (2017)
10.1111/j.1469-7580.2011.01470.x
Do regional modifications in tissue mineral content and microscopic mineralization heterogeneity adapt trabecular bone tracts for habitual bending? Analysis in the context of trabecular architecture of deer calcanei.
J. Skedros (2012)
10.1016/J.MSEC.2010.12.002
Mechanical adaptation of biological materials — The examples of bone and wood
R. Weinkamer (2011)
10.1179/1758120613Z.00000000036
William Fairbairn, Karl Culmann and the Origin of Wolff’s Law
Richard Byrom (2014)
10.1007/s00264-012-1713-4
Enhanced trabecular micro-architecture of the femoral neck in hip osteoarthritis vs. healthy controls: a micro-computer tomography study in postmenopausal women
M. Djurić (2012)
10.2514/6.2008-5991
Computational Simulation for Trabecular Adaptation in Human Proximal Femur Using Design Space Optimization
I. G. Jang (2008)
The mechanics of microdamage and microfracture in trabecular bone
Victoria Rachel Toal (2013)
10.1080/23335432.2015.1017609
Femoral bone mesoscale structural architecture prediction using musculoskeletal and finite element modelling
A. Phillips (2015)
10.1002/ajpa.21365
A weighted osteon morphotype score outperforms regional osteon percent prevalence calculations for interpreting cortical bone adaptation.
John G Skedros (2011)
10.1111/joa.12446
A review of trabecular bone functional adaptation: what have we learned from trabecular analyses in extant hominoids and what can we apply to fossils?
T. L. Kivell (2016)
10.1016/j.bone.2019.115114
Bone adaptation: safety factors and load predictability in shaping skeletal form.
B. Willie (2019)
10.1007/s10853-011-5914-9
The structure and mechanics of bone
J. Currey (2011)
10.1002/PAMM.201110040
Computational Simulation of Bone Remodeling using Design Space Topology Optimization
Christopher Boyle (2011)
10.1002/jbmr.3185
Functional Adaptation of the Calcaneus in Historical Foot Binding
N. Reznikov (2017)
10.1007/978-3-642-14515-5_196
A Novel 3D Strain-Adaptive Continuum Orthotropic Bone Remodelling Algorithm: Prediction of Bone Architecture in the Femur
Diogo M. Geraldes (2010)
10.3970/MCB.2014.011.235
Optimal Mass Distribution Prediction for Human Proximal Femur with Bi-modulus Property.
J. Shi (2014)
10.2298/SARH1212738D
Morphological characteristics of the developing proximal femur: a biomechanical perspective.
M. Djurić (2012)
10.1016/j.jbiomech.2009.09.049
Principles of determination and verification of muscle forces in the human musculoskeletal system: Muscle forces to minimise bending stress.
N. Sverdlova (2010)
Orthotropic modelling of the skeletal system
Martins Da Silva Geraldes (2012)
10.1016/j.bone.2018.04.018
Inter-site variability of the osteocyte lacunar network in the cortical bone underpins fracture susceptibility of the superolateral femoral neck.
Tim Rolvien (2018)
10.1007/s11914-019-00508-y
Inter-site Variability of the Human Osteocyte Lacunar Network: Implications for Bone Quality
Petar Milovanovic (2019)
10.1016/j.actbio.2016.08.040
Inter-trabecular angle: A parameter of trabecular bone architecture in the human proximal femur that reveals underlying topological motifs.
N. Reznikov (2016)
10.1186/1471-2474-14-130
Analysis of trabecular distribution of the proximal femur in patients with fragility fractures
Yaogang Lu (2013)
10.1007/s10237-017-0939-x
Microscale poroelastic metamodel for efficient mesoscale bone remodelling simulations
C. C. Villette (2017)
10.1016/j.jsb.2012.10.013
Secondary osteon size and collagen/lamellar organization ("osteon morphotypes") are not coupled, but potentially adapt independently for local strain mode or magnitude.
J. Skedros (2013)
10.1155/2015/729076
Design, Materials, and Mechanobiology of Biodegradable Scaffolds for Bone Tissue Engineering
Marco A. Velasco (2015)
10.1016/j.bone.2011.08.020
A Wolff in sheep's clothing: trabecular bone adaptation in response to changes in joint loading orientation.
Meir M Barak (2011)
10.1111/joa.12905
Advancing the deer calcaneus model for bone adaptation studies: ex vivo strains obtained after transecting the tension members suggest an unrecognized important role for shear strains.
J. Skedros (2019)
Computational Study of Wolff's Law Utilizing Design Space Topology Optimization: A New Method for Hip Prosthesis Design
Christopher Boyle (2010)
10.3928/01477447-20120327-10
Cam morphology in the human hip.
Vincent S. Y. Ng (2012)
See more
Semantic Scholar Logo Some data provided by SemanticScholar