Online citations, reference lists, and bibliographies.
← Back to Search

Study Of The Electrolyte-insulator-semiconductor Field-effect Transistor (EISFET) With Applications In Biosensor Design

M. W. Shinwari, M. Deen, D. Landheer
Published 2007 · Computer Science, Engineering, Materials Science

Cite This
Download PDF
Analyze on Scholarcy
Share
This paper presents a comprehensive review of the ion-sensitive field-effect transistor (ISFET) and its applications in biomolecular sensing and characterization of electrochemical interfaces. An introduction to the physics of field-effect transistors is presented, followed by a study of the properties of electrolytic solutions and electrolyte interface surface effects. Full modeling of the ion-sensitive transistor is given, followed by a survey of the different uses of the ISFET in biomedical and environmental applications. Particular attention is given to the use of the ion-sensitive transistors as replacements for microarrays in DNA gene expression analysis.
This paper references
10.1016/J.BIOS.2003.12.003
ISFET-neuron junction: circuit models and extracellular signal simulations.
S. Martinoia (2004)
DNA denaturation. www.cbs.dtu.dk/staff/dave/genomics_course/2001_DNAdenature.pdf
DW Ussery (2001)
10.1007/BF00326604
Numerical modeling and characterization of Electrolyte/Insulator/Semiconductor sensor systems
W. Treichel (1994)
10.1016/J.SNB.2003.08.024
Glucose biosensor based on ENFET doped with SiO2 nanoparticles
Xiliang Luo (2004)
Microelectronics Reliability xxx (2006) xxx–xxx 33 ARTICLE IN PRESS Please cite this article in press as: Waleed Shinwari M et al., Study of the electrolyte-insulator-semiconductor field-effect
Waleed Shinwari (2006)
CNTs-Insulator-Semiconductor System for Chemical and Biological Sensor Applications
Jun-Ho Cheon (2005)
10.1143/JJAP.44.2854
DNA Analysis Chip Based on Field-Effect Transistors
T. Sakata (2005)
10.1038/037241a0
Physical Chemistry
M. Muir (1888)
10.1093/NAR/29.24.5163
The effect of surface probe density on DNA hybridization.
A. W. Peterson (2001)
10.1002/352760376X
Bioelectronics : from theory to applications
I. Willner (2005)
Biochemistry. 4th ed
L. Stryer (1995)
10.1063/1.1755429
Comprehensive study of noise processes in electrode electrolyte interfaces
A. Hassibi (2004)
Operation and modeling of the MOS transistor
Y. Tsividis (1987)
10.1016/S0003-2697(03)00090-3
Modeling of DNA hybridization kinetics for spatially resolved biochips.
D. Erickson (2003)
10.1007/S10854-006-0018-Z
Electrical studies of semiconductor–dielectric interfaces
M. Jamal Deen (2006)
The development and application of FET-based biosensors. Biosensors 1986;2:15–33
P. Bergveld (1986)
Glucose biosensor based on ENFET doped with SiO 2 nanoparticles
X Luo (2004)
10.1049/IP-CDS:20040509
Effects of body biasing on the low frequency noise of MOSFETs from a 130 nm CMOS technology
M. Marín (2004)
10.1016/S0925-4005(01)00640-2
A novel ISFET-based NAD+-dependent enzyme sensor for lactate
A. B. Kharitonov (2001)
10.5860/choice.48-0873
A First Course in Electrode Processes
D. Pletcher (1991)
10.1007/978-0-387-29185-7_20
Electrical Characterization of Semiconductor Materials and Devices
M. Deen (2007)
10.1016/S0167-7799(00)01544-4
Cell-transistor hybrid systems and their potential applications.
A. Offenhäusser (2001)
10.1016/S0734-9750(03)00103-4
Ion sensitive field effect transducer-based biosensors.
M. Yu-qing (2003)
10.1016/J.BIOS.2004.01.019
Labelfree fully electronic nucleic acid detection system based on a field-effect transistor device.
F. Uslu (2004)
10.1063/1.2008354
Model for the field effect from layers of biological macromolecules on the gates of metal-oxide-semiconductor transistors
D. Landheer (2005)
10.1109/jproc.2003.813576
Electrochemical microsensors
J. Janata (2003)
10.1002/BBPC.19760800841
E. Gileadi, E. Kirowa-Eisner, and J. Penciner: Interfacial Electrochemistry – An Experimental Approach, Addison-Wesley, Advanced Book Program, Reading, Massachusetts 1975, 525 Seiten, Preis: US $ 19.50.
K. G. Weil (1976)
Critical factors for successful microarray and realtime PCR analyses
C Korfhage (2002)
Playing ground with field-effect sensors on the basis of EIS structures, LAPS and ISFETS. Sensors 2005;5:126–38
MJ Schöning (2005)
10.1016/S0956-5663(99)00008-1
Protein detection with a novel ISFET-based zeta potential analyzer.
Sven Koch (1999)
10.1073/pnas.1337215100
Single-molecule detection of DNA hybridization
Mukta Singh-Zocchi (2003)
10.1258/0004563001899131
Analytical aspects of biosensors
J. Pearson (2000)
10.1016/S0925-4005(02)00301-5
Thirty years of ISFETOLOGY ☆: What happened in the past 30 years and what may happen in the next 30 years
P. Bergveld (2003)
10.1021/BK-1986-0295.CH002
Electrical Characterization of Semiconductor Materials and Devices
D. Schroder (1986)
10.1109/T-ED.1986.22429
A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor
C. Fung (1986)
Semiconductor physics and devices. McGraw-Hill Higher Education
Da Neamen (2003)
10.1016/J.BIOS.2004.01.025
An FET-type charge sensor for highly sensitive detection of DNA sequence.
D. Kim (2004)
10.1021/JP963056H
DIRECT DETECTION OF THE HYBRIDIZATION OF SYNTHETIC HOMO-OLIGOMER DNA SEQUENCES BY FIELD EFFECT
É. Souteyrand (1997)
10.1038/4434
Expression profiling using cDNA microarrays
D. Duggan (1999)
10.2741/1538
Analytical aspects of fet-based biosensors.
J. Xu (2005)
10.3390/S5030126
“Playing around” with Field-Effect Sensors on the Basis of EIS Structures, LAPS and ISFETs
M. J. Schöning (2005)
Immobilization of oligonucleotide probe on Si 3 N 4 surface and its application to generic field effect transistor
T Sakata (2004)
10.1063/1.2355542
Noise considerations in field-effect biosensors
M. J. Deen (2006)
10.1146/ANNUREV.BIOENG.4.020702.153438
DNA microarray technology: devices, systems, and applications.
M. Heller (2002)
Double Layer and Electrode Kinetics
P. Delahay (1965)
10.1007/S00396-004-1234-9
Nanoparticles: from theory to application: Günter Schmid (ed), WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, ISBN 3-527-30507-6, Hbk, 444 pages, price 159,00 Euro
R. Wang (2005)
10.1016/S0968-0004(00)89112-4
Biochemistry (4th edn)
D. Latchman (1995)
10.1016/J.MSEC.2004.08.042
Immobilization of oligonucleotide probes on Si3N4 surface and its application to genetic field effect transistor
T. Sakata (2004)
Noise in physical systems and 1/f fluctuations
P. Händel (1993)
10.1016/J.SNB.2005.10.029
Measurements of CO2, lactic acid and sodium bicarbonate secreted by cultured cells using a flow-through type pH/CO2 sensor system based on ISFET
S. Mohri (2006)
10.1016/S0925-4005(99)00136-7
New ISFET sensor interface circuit for biomedical applications
B. Palan (1999)
10.1093/HMG/8.9.1715
Sensitivity issues in DNA array-based expression measurements and performance of nylon microarrays for small samples.
F. Bertucci (1999)
10.1016/J.BIOS.2003.11.019
A novel glucose ENFET based on the special reactivity of MnO2 nanoparticles.
X. Luo (2004)
10.1109/T-ED.1983.21284
Operation of chemically sensitive field-effect sensors as a function of the insulator-electrolyte interface
L. Bousse (1983)
Interfacial electrochemistry: An experimental approach
E. Gileadi (1975)
Effects of body biasing on the low frequency noise of MOSFETs from a 130 nm Please cite this article in press
M Marin (2006)
10.1007/S10854-006-0001-8
Electrical characterization of semiconductor materials and devices—review
M. J. Deen (2006)
10.1109/7361.983465
Chemical sensors for portable, handheld field instruments
D. Wilson (2001)
10.1109/16.987110
Effect of forward and reverse substrate biasing on low-frequency noise in silicon PMOSFETs
M. J. Deen (2002)
10.1073/PNAS.0504146103
Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors.
Alexander Star (2006)
10.1039/B416548A
A sensitive biosensor for lactate based on layer-by-layer assembling MnO2 nanoparticles and lactate oxidase on ion-sensitive field-effect transistors.
J. Xu (2005)
10.1016/0265-928X(86)85010-6
The development and application of FET-based biosensors.
P. Bergveld (1986)
Measurements of CO2, lactic acid and sodium bicarbonate secreted by cultured cells using a flowthrough type pH/CO2 sensor system based on ISFET. Sensor Actuator B 2006;115:519–25
S Mohri (2006)
10.1063/1.442812
Single electrode potentials related to flat‐band voltage measurements on EOS and MOS structures
L. Bousse (1982)
http://genetics.gsk.com/graphics/dna-big.gif
Microelectronics Reliability xxx (2006) xxx–xxx ARTICLE IN PRESS Please cite this article in press as: Waleed Shinwari M et al., Study of the electrolyte-insulator-semiconductor field-effect
Waleed Shinwari (2006)
10.1039/B204444G
Recent advances in biologically sensitive field-effect transistors (BioFETs).
M. J. Schöning (2002)
10.1039/F19747001807
Site-binding model of the electrical double layer at the oxide/water interface
D. E. Yates (1974)
10.1063/1.2036687
Noise in Advanced Electronic Devices and Circuits
M. J. Deen (2005)
10.1016/s1369-7021(06)71498-5
Semiconductor Physics And Devices
D. Neamen (1992)
10.1002/BIP.20004
Orientation of DNA on a surface from simulation.
Ka-Yiu Wong (2004)
A first course in electrochemical engineering
F. Walsh (1993)
10.1109/ICCDCS.2006.250891
High Sensitivity Detection of Biological Species via the Field-Effect
M. J. Deen (2006)
10.1109/16.19957
A CMOS-integrated 'ISFET-operational amplifier' chemical sensor employing differential sensing
H. P. Wong (1989)
10.18388/ABP.2001_3896
An introduction to DNA chips: principles, technology, applications and analysis.
M. Gabig (2001)
Marinov Ognian, Lime François. Electrical studies of semiconductor–dielectric interfaces. Special Issue
M Deen (2006)
Design and methodology for ISFET (ion sensitive field-effect transistor) microsystems for bioteltmetry
A Morgenshtein (2003)
High sensitivity detection of biological species via the field-effect. In: The IEEE international Caribbean conference on devices, circuits and systems
Mj Deen (2006)



This paper is referenced by
10.1109/JSEN.2018.2884702
A Platinum Reference Electrode for Ion-Sensitive Field-Effect Transistor
D. Zhao (2019)
10.3934/NHM.2016011
A steady-state mathematical model for an EOS capacitor: The effect of the size exclusion
Federica Di Michele (2016)
10.1063/5.0014495
Low frequency electrochemical noise in AlGaN/GaN field effect transistor biosensors
P. Bertani (2020)
10.1109/IRANIANCEE.2017.7985490
Performance and sensitivity analysis of Dual-gated ion sensitive FET
E. Mohammadi (2017)
10.1109/JSTQE.2010.2080261
Nanobonding Technology Toward Electronic, Fluidic, and Photonic Systems Integration
M. Howlader (2011)
10.1016/j.talanta.2015.08.062
Low-temperature solution processing of palladium/palladium oxide films and their pH sensing performance.
Yiheng Qin (2016)
10.1038/s41598-018-30453-2
Bundles of Brain Microtubules Generate Electrical Oscillations
M. R. Cantero (2018)
10.1109/JSEN.2015.2445292
Critical Assessment on Modeling and Design of Nonfaradaic CMOS Electrochemical Sensing
Philip H. Gordon (2016)
10.1016/J.ELECTACTA.2013.08.060
On the stability of silicon field effect capacitors with phosphate buffered saline electrolytic gate and self assembled monolayer gate insulator
N. Hemed (2013)
10.1016/J.PROENG.2015.08.790
Impedance Characterization of DNA-functionalization Layers on AlGaN/GaN High Electron Mobility Transistors☆
Nayeli Espinosa (2015)
Silicon nanowire transistor arrays for biomolecular detection
X. Vu (2011)
MICROFLUIDIC REFERENCE ELECTRODES FOR APPLICATIONS IN BIOSENSING
Salman SafariMohsenabad (2010)
10.1109/ICMEL.2008.4559284
Towards low-cost, high-sensitivity, integrated biosensors
M. J. Deen (2008)
10.1016/j.aca.2008.03.046
Novel semiconductor materials for the development of chemical sensors and biosensors: a review.
N. Chaniotakis (2008)
10.1002/ELAN.200804255
Field-Effect Nanoparticle-Based Glucose Sensor on a Chip: Amplification Effect of Coimmobilized Redox Species
J. Gun (2008)
TANGENTIAL FLOW ULTRAFILTRATION AS AN ANTIFOULING STRATEGY FOR WATER QUALITY SENSORS
P. Saini (2017)
10.1109/TED.2009.2026120
An Integrated Potentiostat With an Electrochemical Cell Using Thin-Film Transistors
M. Kimura (2009)
10.3390/bios6020015
AC and Phase Sensing of Nanowires for Biosensing
M. Crescentini (2016)
10.1109/MNANO.2011.941951
U-Health Smart Home
N. Agoulmine (2011)
10.3390/ma10121432
Effects of UV-Ozone Treatment on Sensing Behaviours of EGFETs with Al2O3 Sensing Film
Cuiling Sun (2017)
Development of an electrochromic thin film transistor
Zhaowang Zong (2014)
Biosensors for drug discovery applications
Nikhil Bhalla (2015)
Electronic Sensors Based on Nanostructured Field-Effect Devices
S. Chen (2013)
10.1007/s00216-008-1970-7
The use of electrochemical impedance spectroscopy for biosensing
F. Lisdat (2008)
10.1002/cphc.201601402
Enzyme-Based Logic Gates and Networks with Output Signals Analyzed by Various Methods.
E. Katz (2017)
10.1002/PSSA.201127766
Threshold voltage of the EOSFET: Reference electrode and oxide–electrolyte interface
P. Fromherz (2012)
10.1088/1674-4926/30/11/114011
Modeling and discussion of threshold voltage for a multi-floating gate FET pH sensor
Shi Zhao-xia (2009)
10.3390/mi8020045
Electrophoretic Concentration and Electrical Lysis of Bacteria in a Microfluidic Device Using a Nanoporous Membrane
M. S. Islam (2017)
10.1007/s11051-018-4254-y
Conductance through glycine in a graphene nanogap
Puspitapallab Chaudhuri (2018)
10.1109/JSEN.2009.2037016
Influence of Oxygen Content and Post-Deposition Annealing on Structural and Sensing Characteristics of $\hbox{Tm}_{2}\hbox{O}_{3}$ Thin Membranes for pH Detection
Tung-Ming Pan (2010)
10.1109/TED.2015.2395875
TCAD-Based Simulation Method for the Electrolyte–Insulator–Semiconductor Field-Effect Transistor
Bongsik Choi (2015)
10.1149/2.007310JES
Microfluidic Reference Electrode with Free-Diffusion Liquid Junction
S. Safari (2013)
See more
Semantic Scholar Logo Some data provided by SemanticScholar