Online citations, reference lists, and bibliographies.

Biomineralization In Chitosan/Bioglass® Composite Membranes Under Different Dynamic Mechanical Conditions.

S. Caridade, E. Merino, N. Alves, J. Mano
Published 2013 · Materials Science, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
Fundamental aspects of biomineralization may be important in order to understand and improve calcification onto the surface of biomaterials. The biomineralization process is mainly followed in vitro by assessing the evolution of the apatite layer that is formed upon immersion of the material in Simulated Body Fluid (SBF). In this work we propose an innovative methodology to monitor apatite deposition by looking at the evolution of the mechanical/viscoelastic properties of the sample while immersed in SBF, using non-conventional dynamic mechanical analysis (DMA) performed under distinct displacement amplitudes (d). The biomimetic biomineralization process in composite membranes of chitosan (CTS) with Bioglass® (BG) was followed by measuring the change of the storage modulus, E', and the loss factor, tan δ, at 37 °C and in SBF, both online (d=10 μm and d=30 μm) and offline (d=0 μm). The online experiments revealed that the E' decreased continuously up in the first hours of immersion in SBF that should be related to the dissolution of BG particles. After that, an increase of the stiffness was verified due to the apatite deposition. SEM/EDS observations upon 24h of immersion in SBF showed higher development of apatite deposition with increasing displacement amplitude.
This paper references
Acta Biomater
D Rohanova (2011)
Mater
J. F. Mano (2008)
Biomed. Mater. Res. Part A
D Arcos (2003)
Acta Biomater
I B Leonor (2008)
Mater
S. Radin (1997)
10.1016/J.BIOMATERIALS.2004.07.009
Effect of pH and ionic strength on the reactivity of Bioglass 45S5.
M. Cerruti (2005)
10.1002/MABI.200700139
Viscoelastic properties of chitosan with different hydration degrees as studied by dynamic mechanical analysis.
J. Mano (2008)
10.1002/MACP.200800191
Straightforward determination of the degree of N-acetylation of chitosan by means of first-derivative UV spectrophotometry
R. S. D. Silva (2008)
Chem
N. M. Alves (2010)
Ceram
S. Falaize (1999)
J. Biomed. Mater. Res
T Kokubo (1990)
10.1023/A:1011249330581
Biomimetic Apatite Deposition on Calcium Silicate Gel Glasses
A. Salinas (2001)
10.1016/S0142-9612(02)00371-X
In vitro bioactivity of starch thermoplastic/hydroxyapatite composite biomaterials: an in situ study using atomic force microscopy.
I. B. Leonor (2003)
10.1016/j.ijbiomac.2010.03.015
Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering.
M. Swetha (2010)
10.1016/J.BIOMATERIALS.2006.01.017
How useful is SBF in predicting in vivo bone bioactivity?
T. Kokubo (2006)
10.1002/(SICI)1097-4636(200008)51:2<191::AID-JBM7>3.0.CO;2-T
Effect of the continuous solution exchange on the in vitro reactivity of a CaO-SiO(2) sol-gel glass.
I. Izquierdo-Barba (2000)
10.1002/jbm.a.32129
Electrochemical processes of nucleation and growth of calcium phosphate on titanium supported by real-time quartz crystal microbalance measurements and X-ray photoelectron spectroscopy analysis.
N. Eliaz (2009)
10.1002/JBM.A.10503
A new quantitative method to evaluate the in vitro bioactivity of melt and sol-gel-derived silicate glasses.
D. Arcos (2003)
10.1515/9783111419787-003
H
Yu-Qin Cao (1824)
Macromol. Biosci
J F Mano (2008)
J. Am. Ceram. Soc
A H De Aza (2007)
Mater
I. Izquierdo-Barba (2000)
Acta Biomater
V Aina (2009)
10.1111/J.1551-2916.2007.01534.X
In Situ Bone‐Like Apatite Formation From a Bioeutectic® Ceramic in SBF Dynamic Flow
A. H. Aza (2007)
J. Biomed. Mater. Res
I Izquierdo-Barba (2000)
J. Am. Ceram. Soc
S Falaize (1999)
Mater
N. Eliaz (2009)
10.1016/j.actbio.2012.06.040
Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration.
J. Mota (2012)
Carbohydr
M. Terbojevich (1996)
Ceram
A. H. De Aza (2007)
10.1039/B910960A
Designing biomaterials based on biomineralization of bone
N. Alves (2010)
Materials Science and Engineering C
Sarah L. Sewell (2009)
10.1016/j.biomaterials.2008.10.025
Membrane of hybrid chitosan-silica xerogel for guided bone regeneration.
Eunjung Lee (2009)
10.1016/J.BIOMATERIALS.2006.01.039
Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering.
K. Rezwan (2006)
Mater
M. Vallet-Regi (1999)
Ceram.-Silik
G Lutisanova (2011)
Biomed. Mater. Res
S Radin (1997)
J. Biomed. Mater. Res
M Vallet-Regi (1999)
10.1016/J.MSEC.2008.03.005
Bioactive poly(L-lactic acid)-chitosan hybrid scaffolds
J. F. Mano (2008)
10.1007/S10856-006-0683-8
Micro-computed tomography (μ -CT) as a potential tool to assess the effect of dynamic coating routes on the formation of biomimetic apatite layers on 3D-plotted biodegradable polymeric scaffolds
A. Oliveira (2007)
10.1002/(SICI)1097-4636(19990915)46:4<560::AID-JBM14>3.0.CO;2-M
Influence of P2O5 on crystallinity of apatite formed in vitro on surface of bioactive glasses.
M. Vallet-Regí (1999)
10.1002/jbm.820100405
Chemical and mechanical behavior of bioglass-coated alumina.
D. Greenspan (1976)
Acta Biomater
S Ghosh (2008)
10.1016/j.actbio.2011.02.028
TRIS buffer in simulated body fluid distorts the assessment of glass-ceramic scaffold bioactivity.
Dana Rohanová (2011)
J. Sol-Gel Sci. Technol
A J Salinas (2001)
Macromol. Chem. Phys
R M P Da Silva (2008)
Macromol. Biosci
S G Caridade (2012)
Mater
D. Arcos (2003)
Macromol
S. G. Caridade (2012)
Mater
D. C. Greenspan (1976)
Macromol
J. F. Mano (2008)
Chem
M. Vallet-Regi (2000)
10.1016/j.actbio.2008.10.020
Zinc-containing bioactive glasses: surface reactivity and behaviour towards endothelial cells.
V. Aina (2009)
10.1007/978-94-010-0305-6_10
Dynamic Mechanical Analysis in Polymers for Medical Applications
J. F. Mano (2002)
Mater
T. Kokubo (1990)
J. Mater. Sci.-Mater. Med
A L Oliveira (2007)
Biomed. Mater. Res
D C Greenspan (1976)
10.1016/j.actbio.2008.03.003
Growth of a bonelike apatite on chitosan microparticles after a calcium silicate treatment.
I. B. Leonor (2008)
Biomed. Mater. Res. Part A
N Eliaz (2009)
Mater. Sci. Eng. C-Biomim. Supramol. Syst
J F Mano (2008)
Int
M. Swetha (2010)
10.1021/CM001068G
Compositional Variations in the Calcium Phosphate Layer Growth on Gel Glasses Soaked in a Simulated Body Fluid
M. Vallet-Regí (2000)
10.1002/jbm.820240607
Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W.
T. Kokubo (1990)
10.1016/j.jmbbm.2012.11.012
Chitosan membranes containing micro or nano-size bioactive glass particles: evolution of biomineralization followed by in situ dynamic mechanical analysis.
Sofia G. Caridade (2013)
Int. J. Biol. Macromol
M Swetha (2010)
J. Mech. Behav. Biomed. Mater
S G Caridade (2012)
10.1515/9783111576855-015
J
Seguin Hen (1824)
J. Biomed. Mater. Res
M Vallet-Regi (1999)
10.1016/j.actbio.2008.02.001
Dynamic mechanical behavior of starch-based scaffolds in dry and physiologically simulated conditions: effect of porosity and pore size.
S. Ghosh (2008)
J. Mater. Chem
M Alves (2010)
Dynamic Mechanical Analysis in Polymers for Medical Applications, Polymer Based Systems on Tissue Engineering, Replacement and RegenerationKluwer Academic Publishers
J F Mano (2002)
Technol
A. J. Salinas (2001)
Acta Biomater
J Mota (2012)
Chem. Mater
M Vallet-Regi (2000)
10.1002/(SICI)1097-4636(19971205)37:3<363::AID-JBM7>3.0.CO;2-J
The effect of in vitro modeling conditions on the surface reactions of bioactive glass.
S. Radin (1997)
10.1515/9783111576855-016
K
Martin P. Catherwood (1824)
10.1179/174328408x369933
Biomaterials
R. Misra (2008)
10.1016/0144-8617(95)00147-6
Molecular parameters of chitosans depolymerized with the aid of papain
Maria Terbojevich (1996)
Carbohydr. Polym
M Terbojevich (1996)
10.1002/mabi.201200036
Bioactivity and viscoelastic characterization of chitosan/bioglass® composite membranes.
Sofia G. Caridade (2012)
10.1515/9783111438443-006
N
Città DI Torino (1824)
10.1111/J.1151-2916.1999.TB01861.X
In Vitro Behavior of Silica-Based Xerogels Intended as Controlled Release Carriers
S. Falaize (1999)
10.1002/(SICI)1097-4636(19990315)44:4<416::AID-JBM7>3.0.CO;2-S
XRD, SEM-EDS, and FTIR studies of in vitro growth of an apatite-like layer on sol-gel glasses.
M. Vallet-Regí (1999)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar