Online citations, reference lists, and bibliographies.
← Back to Search

Ultracompact Three-Dimensional Tubular Conductivity Microsensors For Ionic And Biosensing Applications

C. Martinez-Cisneros, S. Sánchez, W. Xi, O. Schmidt
Published 2014 · Materials Science, Medicine

Save to my Library
Download PDF
Analyze on Scholarcy
Share
We present ultracompact three-dimensional tubular structures integrating Au-based electrodes as impedimetric microsensors for the in-flow determination of mono- and divalent ionic species and HeLa cells. The microsensors show an improved performance of 2 orders of magnitude (limit of detection = 0.1 nM for KCl) compared to conventional planar conductivity detection systems integrated in microfluidic platforms and the capability to detect single HeLa cells in flowing phosphate buffered saline. These highly integrated conductivity tubular sensors thus open new possibilities for lab-in-a-tube devices for bioapplications such as biosensing and bioelectronics.
This paper references
Anal. Methods
W K Coltro (2012)
BermúBermúdez Ureñ a, E
A A Solovev (2009)
10.1021/nl1036148
Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors.
E. Smith (2011)
10.1002/elps.201200358
Contactless conductivity detection for analytical techniques: Developments from 2010 to 2012
P. Kubáň (2013)
10.1038/nature05063
Cells on chips
J. El-Ali (2006)
10.1088/0022-3727/40/1/S10
Single cell dielectric spectroscopy
H. Morgan (2007)
J. R. Small
Y Chang (2011)
ACS Nano
I Mö Nch (2011)
10.1016/j.talanta.2007.05.058
Contactless conductivity detection for microfluidics: designs and applications.
M. Pumera (2007)
10.1039/C1AY05364G
Capacitively coupled contactless conductivity detection on microfluidic systems—ten years of development
W. K. T. Coltro (2012)
J. Proteome Res
I L Ang (2006)
10.1039/b808366e
Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses.
M. Kim (2009)
10.1177/096120339600500531
Regulatory Mechanisms in Maintenance and Modulation of Transmembrane Lipid Asymmetry: Pathophysiological Implications
E. Bevers (1996)
10.1088/0957-4484/23/25/255701
Magnetoresistance of rolled-up Fe3Si nanomembranes.
J. Schumann (2012)
10.1080/00332920408407121
Lupus
Blaine Hammond (2004)
3528−3549. (13) Wang
W R Vandaveer (2004)
Nano Letters Letter
Nano Lett
Bof Bufon (2010)
10.1039/c2lc21175k
Lab-in-a-tube: ultracompact components for on-chip capture and detection of individual micro-/nanoorganisms.
E. Smith (2012)
10.1016/J.TRAC.2007.11.002
Green-tape ceramics. New technological approach for integrating electronics and fluidics in microsystems
N. Ibáñez-García (2008)
10.1002/adma.201203458
Highly conductive and strain-released hybrid multilayer Ge/Ti nanomembranes with enhanced lithium-ion-storage capability.
C. Yan (2013)
10.1039/C3RA47200K
Three-dimensional chemical sensors based on rolled-up hybrid nanomembranes
Céline Vervacke (2014)
Meas. Sci. Technol
T Sun (2007)
1063−1070. (24) Schmidt
K A Mahabadi (2001)
10.1016/J.ACA.2005.12.037
Microfluidics technology for manipulation and analysis of biological cells
Changqing Yi (2006)
10.1002/smll.201000946
Microfluidic devices for bioapplications.
L. Yeo (2011)
Talanta
M Toole (2005)
10.1007/BF01142195
Calcium ions and the control of proliferation in normal and cancer cells
A. C. Durham (1982)
Lab Chip Lab Chip Lab Chip
H.-T Huang (2009)
Appl. Phys. Lett
R Songmuang (2007)
Lab Chip
E J Smith (2012)
Chem. Phys. Lipids
S Riedl (2011)
10.1039/c3lc50457c
Single cell detection using a magnetic zigzag nanowire biosensor.
H. Huang (2013)
10.1016/J.ACA.2005.10.046
A low-cost optical sensing device based on paired emitter–detector light emitting diodes
K. Lau (2006)
Adv. Mater
V Preobrazhenskii (2000)
10.1088/0957-0233/18/9/015
Broadband single cell impedance spectroscopy using maximum length sequences: theoretical analysis and practical considerations
T. Sun (2007)
10.1002/ELPS.200600113
Fabrication and characterization of semicircular detection electrodes for contactless conductivity detector – CE microchips
Chia-Yen Lee (2006)
10.1016/J.BIOMATERIALS.2007.05.037
On-chip cell migration assay using microfluidic channels.
Fu-Qiang Nie (2007)
10.1016/j.talanta.2005.01.054
Photometric detection in flow analysis systems using integrated PEDDs.
Martina O' Toole (2005)
10.1021/ac801095p
Dielectrophoretic field-flow fractionation system for detection of aquatic toxicants.
Sittisak Pui-ock (2008)
10.1002/elps.200800478
Ten years of axial capacitively coupled contactless conductivity detection for CZE – a review
P. Kubáň (2009)
Anal. Chim. Acta
K T Lau (2006)
10.1007/S00604-007-0802-3
Advances in amperometric and conductometric detection in capillary and chip-based electrophoresis
F. Matysik (2008)
10.1002/ELPS.200406059
Fundamental aspects of contactless conductivity detection for capillary electrophoresis. Part I: Frequency behavior and cell geometry
P. Kubáň (2004)
10.1002/ELPS.200406060
Fundamental aspects of contactless conductivity detection for capillary electrophoresis. Part II: Signal‐to‐noise ratio and stray capacitance
P. Kubáň (2004)
10.1063/1.2737751
Impedance spectroscopy using maximum length sequences: application to single cell analysis.
S. Gawad (2007)
疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A
宁北芳 (2005)
Biosci. Rep. J. Phys. D: Appl. Phys
A C H Durham (1982)
10.1007/s00216-011-5233-7
Comparison of the performance characteristics of two tubular contactless conductivity detectors with different dimensions and application in conjunction with HPLC
J. Mark (2011)
10.1016/j.chemphyslip.2011.09.004
Membrane-active host defense peptides – Challenges and perspectives for the development of novel anticancer drugs
Sabrina Riedl (2011)
10.1073/PNAS.73.5.1651
Different calcium requirements for proliferation of conditionally and unconditionally tumorigenic mouse cells.
A. Boynton (1976)
10.1002/adma.201001422
Self-wound composite nanomembranes as electrode materials for lithium ion batteries.
Hengxing Ji (2010)
10.1039/b821247c
Self-powered microfluidic chips for multiplexed protein assays from whole blood.
Lidong Qin (2009)
10.1039/c3lc50721a
Single cell detection using 3D magnetic rolled-up structures.
Tzong-Rong Ger (2013)
10.1021/nl303887b
Rolled-up nanomembranes as compact 3D architectures for field effect transistors and fluidic sensing applications.
Daniel Grimm (2013)
10.1002/ADMA.200801589
Versatile Approach for Integrative and Functionalized Tubes by Strain Engineering of Nanomembranes on Polymers
Y. Mei (2008)
Talanta
D Diamond (2008)
TrAC, Trends Anal. Chem
M Pumera (2006)
10.1002/smll.200900021
Catalytic microtubular jet engines self-propelled by accumulated gas bubbles.
A. Solovev (2009)
10.1016/j.talanta.2007.11.022
Integration of analytical measurements and wireless communications--current issues and future strategies.
D. Diamond (2008)
10.1002/ELAN.200403229
Electrochemical Detection for Capillary Electrophoresis Microchips: A Review
J. Wang (2005)
Anal. Chim. Acta
C Q Yi (2006)
Adv. Mater
Ji (2010)
J. Anal. Chem
C S Martinez-Cisneros (2007)
10.1021/PR060109R
Study of serum haptoglobin and its glycoforms in the diagnosis of hepatocellular carcinoma: a glycoproteomic approach.
I. Ang (2006)
10.1021/nl1010367
Self-assembled ultra-compact energy storage elements based on hybrid nanomembranes.
C. C. B. Bufon (2010)
10.1016/S0925-4005(03)00266-1
Microfluidic devices for cellomics: a review
H. Andersson (2003)
10.1007/s100190100124
Nanotechnology
J. Gilman (2001)
10.1021/AC0713398
Miniaturized total analysis systems: integration of electronics and fluidics using low-temperature co-fired ceramics.
C. Martinez-Cisneros (2007)
10.1016/J.TRAC.2005.08.005
New materials for electrochemical sensing VII. Microfluidic chip platforms
M. Pumera (2006)
10.6013/jbrewsocjapan1988.86.425
基礎講座 電気泳動(Electrophoresis)
大房 健 (2005)
10.1039/c1lc20693a
Highly-integrated lab-on-chip system for point-of-care multiparameter analysis.
Soeren Schumacher (2012)
Lab Chip
S M Harazim (2012)
10.1039/c2nr32798h
Rolled-up magnetic microdrillers: towards remotely controlled minimally invasive surgery.
W. Xi (2013)
Nanoscale
W Xi (2013)
Gascoyne, P. Anal. Chem
S Pui-Ock (2008)
10.1038/35065525
Nanotechnology: Thin solid films roll up into nanotubes
O. Schmidt (2001)
10.1016/S1386-9477(99)00249-0
Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays
V. Prinz (2000)
10.1021/nn202351j
Rolled-up magnetic sensor: nanomembrane architecture for in-flow detection of magnetic objects.
I. Moench (2011)
Sens. Actuators, B
H Andersson (2003)
Rev. Sci. Instrum
S Gawad (2007)
10.1063/1.2472546
SiOx∕Si radial superlattices and microtube optical ring resonators
R. Songmuang (2007)
10.1002/elps.200900578
Capacitively coupled contactless conductivity detection with dual top–bottom cell configuration for microchip electrophoresis
K. A. Mahabadi (2010)
10.1039/c2lc40275k
Lab-in-a-tube: on-chip integration of glass optofluidic ring resonators for label-free sensing applications.
S. Harazim (2012)
10.1002/ELPS.200406115
Recent developments in electrochemical detection for microchip capillary electrophoresis
Walter R. Vandaveer (2004)
10.1049/IET-NBT:20070019
Analytical electric field and sensitivity analysis for two microfluidic impedance cytometer designs.
T. Sun (2007)
Nano Lett
D Grimm (2013)
J. TrAC, Trends Anal. Chem
N Ibanez-Garcia (2008)



This paper is referenced by
10.1109/TNB.2018.2863734
Label-Free Biomolecule Detection in Physiological Solutions With Enhanced Sensitivity Using Graphene Nanogrids FET Biosensor
R. Ray (2018)
10.1364/OE.25.008144
High efficiency fabrication of complex microtube arrays by scanning focused femtosecond laser Bessel beam for trapping/releasing biological cells.
L. Yang (2017)
10.1021/acsnano.6b03566
Magnetically Patterned Rolled-Up Exchange Bias Tubes: A Paternoster for Superparamagnetic Beads.
Timo Ueltzhöffer (2016)
10.1002/smll.201601413
Rolling Up a Monolayer MoS2 Sheet.
J. Meng (2016)
10.1039/c8lc00309b
Highly integrated autonomous lab-on-a-chip device for on-line and in situ determination of environmental chemical parameters.
C. Martinez-Cisneros (2018)
10.1002/AENM.201600797
Introducing Rolled‐Up Nanotechnology for Advanced Energy Storage Devices
Junwen Deng (2016)
10.1002/ANGE.201406096
Chemisch betriebene Mikro- und Nanomotoren
S. Sánchez (2015)
10.1002/adma.201503696
Biomimetic Microelectronics for Regenerative Neuronal Cuff Implants.
D. Karnaushenko (2015)
10.1186/S40638-014-0011-6
Tubular micromotors: from microjets to spermbots
V. Magdanz (2014)
10.1016/J.MICROREL.2018.09.001
Towards reliability enhancement of graphene FET biosensor in complex analyte: Artificial neural network approach
J. Basu (2018)
10.1039/d0ta05796g
Highly efficient electrochemical energy conversion in a 3D hollow microenvironment: towards on-a-chip sensor applications
Letícia M. M. Ferro (2020)
10.1039/c4lc90121e
Lab-in-a-tube systems as ultra-compact devices.
S. Sánchez (2015)
10.3390/s150306324
Label-Free, Single Molecule Resonant Cavity Detection: A Double-Blind Experimental Study
M. V. Chistiakova (2015)
10.1126/sciadv.aap8203
Stimuli-responsive and on-chip nanomembrane micro-rolls for enhanced macroscopic visual hydrogen detection
Borui Xu (2018)
10.1021/acs.nanolett.5b02099
Dimensionality of Rolled-up Nanomembranes Controls Neural Stem Cell Migration Mechanism
B. Koch (2015)
10.1007/978-981-13-6229-3_4
Miniaturized Electrochemical Sensors to Facilitate Liquid Biopsy for Detection of Circulating Tumor Markers
Yi-Ge Zhou (2019)
10.1149/2.0261808JES
Low Noise Field Effect Biosensor with Electrochemically Reduced Graphene Oxide
J. Basu (2018)
10.1039/c4cs00370e
Cancer biomarker detection: recent achievements and challenges.
L. Wu (2015)
10.1039/c5lc00024f
Tailoring three-dimensional architectures by rolled-up nanotechnology for mimicking microvasculatures.
R. Arayanarakool (2015)
10.1063/1.4929777
Micro-photoluminescence and micro-Raman investigations of rolled-up InGaAs/GaAs microtubes monolithically integrated on silicon
Q. Wang (2015)
10.1002/adma.201902994
3D Self-Assembled Microelectronic Devices: Concepts, Materials, Applications.
D. Karnaushenko (2019)
10.1016/J.MATPR.2017.10.167
High Performance Biosensor Based on Electronic Transduction of Refractive Index Using 3D Nanostructured Biogenic Silica
Abhinaba Mal (2018)
10.1093/nsr/nwz164
Electro-mechanically controlled assembly of reconfigurable 3D mesostructures and electronic devices based on dielectric elastomer platforms
Wenbo Pang (2020)
10.1002/adma.201901895
Micro/Nanoscale 3D Assembly by Rolling, Folding, Curving, and Buckling Approaches.
X. Cheng (2019)
10.1002/smll.201803482
Single-Nanostructured Electrochemical Detection for Intrinsic Mechanism of Energy Storage: Progress and Prospect.
Sidra Anis Farooqi (2018)
10.1038/srep43175
A Novel Impedimetric Microfluidic Analysis System for Transgenic Protein Cry1Ab Detection
Shunru Jin (2017)
10.1002/anie.201406096
Chemically powered micro- and nanomotors.
S. Sánchez (2015)
10.1007/s40012-020-00308-1
Development of low noise FET biosensor using graphene and ZnO nanostructures on cost effective substrates for biomolecule detection with enhanced performance
C. Roychaudhuri (2020)
10.1038/srep41584
Ultra-fast cell counters based on microtubular waveguides
Cornelius S. Bausch (2017)
10.1002/adma.201402484
A single rolled-up Si tube battery for the study of electrochemical kinetics, electrical conductivity, and structural integrity.
Wenping Si (2014)
10.1038/AM.2015.53
Compact helical antenna for smart implant applications
D. Karnaushenko (2015)
10.1021/acs.analchem.5b04310
Micro Total Analysis Systems: Fundamental Advances and Applications.
Damith E W Patabadige (2016)
See more
Semantic Scholar Logo Some data provided by SemanticScholar