Online citations, reference lists, and bibliographies.
← Back to Search

Imaging Of Buried 3D Magnetic Rolled-up Nanomembranes

R. Streubel, Luyang Han, F. Kronast, A. Ünal, O. Schmidt, D. Makarov
Published 2014 · Medicine, Materials Science

Save to my Library
Download PDF
Analyze on Scholarcy
Share
Increasing performance and enabling novel functionalities of microelectronic devices, such as three-dimensional (3D) on-chip architectures in optics, electronics, and magnetics, calls for new approaches in both fabrication and characterization. Up to now, 3D magnetic architectures had mainly been studied by integral means without providing insight into local magnetic microstructures that determine the device performance. We prove a concept that allows for imaging magnetic domain patterns in buried 3D objects, for example, magnetic tubular architectures with multiple windings. The approach is based on utilizing the shadow contrast in transmission X-ray magnetic circular dichroism (XMCD) photoemission electron microscopy and correlating the observed 2D projection of the 3D magnetic domains with simulated XMCD patterns. That way, we are not only able to assess magnetic states but also monitor the field-driven evolution of the magnetic domain patterns in individual windings of buried magnetic rolled-up nanomembranes.
This paper references
Opt. Express
N Sherwood-Droz (2011)
10.1039/c2nr31086d
Magnetic states of an individual Ni nanotube probed by anisotropic magnetoresistance.
D. Rüffer (2012)
10.1063/1.4812661
Vertically aligned rolled-up SiO2 optical microcavities in add-drop configuration
Stefan Boettner (2013)
10.1016/S1369-7021(05)71335-3
Soft X-ray microscopy of nanomagnetism
P. Fischer (2006)
10.1063/1.1399006
Hexagonally ordered 100 nm period nickel nanowire arrays
K. Nielsch (2001)
10.1038/35065525
Nanotechnology: Thin solid films roll up into nanotubes
O. Schmidt (2001)
10.1103/PhysRevLett.111.067202
Reversal mechanism of an individual Ni nanotube simultaneously studied by torque and SQUID magnetometry.
A. Buchter (2013)
10.1063/1.4737425
Self-organized InAs/InGaAsP quantum dot tube lasers
Pablo Bianucci (2012)
10.1371/journal.pone.0074145
MEG Evidence for Dynamic Amygdala Modulations by Gaze and Facial Emotions
Thibaud Dumas (2013)
Phys. Rev. B
J Kimling (2011)
10.1103/PhysRevLett.104.037205
Spin-wave interference in three-dimensional rolled-up ferromagnetic microtubes.
Felix Balhorn (2010)
10.1016/0368-2048(95)02537-5
X-ray magnetic circular dichroism spectroscopy of transition metal thin films
J. Stoehr (1995)
10.1063/1.4727909
Chiral symmetry breaking and pair-creation mediated Walker breakdown in magnetic nanotubes
Ming Yan (2012)
Landeros, P. Appl. Phys. Lett
J A Otalora (2012)
10.1023/A:1022258620435
Single Trial Analysis of Neurophysiological Correlates of the Recognition of Complex Objects and Facial Expressions of Emotion
L. Liu (2004)
Nano Lett
(2002)
10.1103/PHYSREVB.84.174406
Photoemission electron microscopy of three-dimensional magnetization configurations in core-shell nanostructures
J. Kimling (2011)
10.1039/c2lc21175k
Lab-in-a-tube: ultracompact components for on-chip capture and detection of individual micro-/nanoorganisms.
E. Smith (2012)
Nano Letters Letter Phys. Rev. Lett
F Balhorn (2010)
Appl. Phys. Lett
K Nielsch (2001)
Phys. Rev. Lett
M Yan (2010)
10.1142/S2010324713400018
ROLLED-UP PERMALLOY NANOMEMBRANES WITH MULTIPLE WINDINGS
R. Streubel (2013)
10.1021/nl400317j
Imaging the Fine Structure of a Magnetic Domain Wall in a Ni Nanocylinder
N. Biziere (2013)
J. Electron. Spectrosc. Relat. Phenom
Sto Hr (1995)
Arbiol, J.; Fontcuberta i Morral, A
D Rü Ffer (2012)
10.1002/adma.201303003
Magnetic microstructure of rolled-up single-layer ferromagnetic nanomembranes.
R. Streubel (2014)
10.1364/OE.21.013580
Vertically stacked microring waveguides for coupling between multiple photonic planes.
J. Bessette (2013)
10.1142/S2010324713400079
OPTICALLY MEASURED SPIN-WAVE MODE-SPECTRUM IN A ROLLED-UP PERMALLOY FILM WITH TIME-RESOLVED SCANNING-KERR-MICROSCOPY
Daniel Mellem (2013)
10.1126/science.1145799
Magnetic Domain-Wall Racetrack Memory
S. Parkin (2008)
10.1063/1.3046782
Depth-resolved soft x-ray photoelectron emission microscopy in nanostructures via standing-wave excited photoemission
S. Yang (2008)
Opt. Express Appl. Phys. Lett
J T Bessette (2013)
10.1021/nl201773d
Hybrid organic/inorganic molecular heterojunctions based on strained nanomembranes.
Carlos Cesar Bof Bufon (2011)
10.1021/nl301147h
Magnetically capped rolled-up nanomembranes.
R. Streubel (2012)
10.1142/S2010324713400092
CURVATURE-INDUCED MAGNETOCHIRALITY
R. Hertel (2013)
Appl. Phys. Lett
I Mö Nch (2011)
10.1016/S1386-9477(99)00249-0
Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays
V. Prinz (2000)
10.1021/nl302950u
Cantilever magnetometry of individual Ni nanotubes.
D. Weber (2012)
10.1021/NL025537K
Self-ordering Regimes of Porous Alumina: The 10% Porosity Rule
K. Nielsch (2002)
10.1063/1.3676269
Towards compact three-dimensional magnetoelectronics—Magnetoresistance in rolled-up Co/Cu nanomembranes
C. Müller (2012)
10.1063/1.3687154
Chirality switching and propagation control of a vortex domain wall in ferromagnetic nanotubes
J. A. Otálora (2012)
10.1364/OE.19.017758
Scalable 3D dense integration of photonics on bulk silicon.
N. Sherwood-Droz (2011)
J. Magn. Magn. Mater
(2001)
10.1063/1.3700809
Axial and azimuthal spin-wave eigenmodes in rolled-up permalloy stripes
Felix Balhorn (2012)
10.1002/adma.201201190
Printable giant magnetoresistive devices.
D. Karnaushenko (2012)
Z. Appl. Phys. Lett
P Bianucci (2012)
Appl. Phys. Lett
M Eberhardt (2008)
Mendach, S. Appl. Phys. Lett
F Balhorn (2012)
10.1039/C3RA46340K
Magnetic domains in rolled-up nanomembranes of Co/Pt multilayers with perpendicular magnetic anisotropy
J. Zarpellon (2014)
10.1088/0022-3727/42/5/055001
Fabrication of ferromagnetic rolled-up microtubes for magnetic sensors on fluids
E. B. Ureña (2009)
Adv. Mater
R Streubel (2014)
Lab Chip
E J Smith (2012)
10.1063/1.4756708
Equilibrium magnetic states in individual hemispherical permalloy caps
R. Streubel (2012)
10.1016/S0304-8853(01)00013-0
Giant magneto-impedance in soft magnetic ``Wires''
M. Vázquez (2001)
Hertel, R. Appl. Phys. Lett
M Yan (2012)
11) Hertel, R. SPIN 2013
Bermúbermúdez Ureñ A (2009)
PLoS One
T Dumas (2013)
10.1103/PHYSREVLETT.104.057201
Beating the walker limit with massless domain walls in cylindrical nanowires.
M. Yan (2010)
10.1038/30694
Carbon nanotubule membranes for electrochemical energy storage and production
G. Che (1998)
10.1021/nn202351j
Rolled-up magnetic sensor: nanomembrane architecture for in-flow detection of magnetic objects.
I. Moench (2011)
Appl. Phys. Lett
R Streubel (2012)
Phys. Rev. Lett
D P Weber (2012)
Nano Lett
N Biziere (2013)
10.1016/j.otohns.2009.05.016
Nature
R. Rosenfeld (2009)



This paper is referenced by
Non-planar geometrical effects on the magnetoelectrical signal in a three-dimensional nanomagnetic circuit
Fanfan Meng (2020)
10.1038/srep23316
Rashba Torque Driven Domain Wall Motion in Magnetic Helices
O. Pylypovskyi (2016)
Imaging Spin Textures on Curved Magnetic Surfaces
Dipl.-Phys. Robert Streubel (2015)
10.1103/PHYSREVAPPLIED.6.024016
Ferromagnetic Resonance of a Single Magnetochiral Metamolecule of Permalloy
T. Kodama (2016)
10.1002/adma.201503127
Self-Assembled On-Chip-Integrated Giant Magneto-Impedance Sensorics.
D. Karnaushenko (2015)
10.1021/acsnano.6b03566
Magnetically Patterned Rolled-Up Exchange Bias Tubes: A Paternoster for Superparamagnetic Beads.
Timo Ueltzhöffer (2016)
10.1039/C6RA13684B
Transformation of epitaxial NiMnGa/InGaAs nanomembranes grown on GaAs substrates into freestanding microtubes
C. Müller (2016)
10.1016/b978-0-08-102832-2.00017-7
Determining magnetization configurations and reversal of individual magnetic nanotubes
M. Poggio (2020)
10.1038/s41598-017-18835-4
Mesoscale Dzyaloshinskii-Moriya interaction: geometrical tailoring of the magnetochirality
O. Volkov (2017)
10.1038/ncomms15756
Three-dimensional nanomagnetism
A. Fernández-Pacheco (2017)
10.1088/0953-8984/28/48/483002
Ultrafast domain wall dynamics in magnetic nanotubes and nanowires.
R. Hertel (2016)
10.1002/admi.201902048
Highly Symmetric and Extremely Compact Multiple Winding Microtubes by a Dry Rolling Mechanism
S. Moradi (2020)
10.1088/1361-6463/AA9ECB
Metamaterials with magnetism and chirality
S. Tomita (2018)
10.1109/TMAG.2014.2363054
X-Ray Imaging of Magnetic Structures
P. Fischer (2015)
10.1016/bs.hmm.2018.08.002
Magnetic Nanowires and Nanotubes
M. Staňo (2018)
Lawrence Berkeley National Laboratory Recent Work Title Three-dimensional nanomagnetism Permalink
A. Fernández-Pacheco (2017)
10.1088/1361-6463/aa9ecb/meta
Metamaterials with magnetism and chirality
S. Tomita (2018)
10.1038/ncomms8612
Retrieving spin textures on curved magnetic thin films with full-field soft X-ray microscopies
R. Streubel (2015)
10.1038/srep08787
Manipulating Topological States by Imprinting Non-Collinear Spin Textures
R. Streubel (2015)
10.1103/PhysRevB.99.024433
Bloch-point-mediated topological transformations of magnetic domain walls in cylindrical nanowires
O. Fruchart (2019)
10.1088/0022-3727/49/36/363001
Magnetism in curved geometries
R. Streubel (2016)
10.1038/s41598-018-28598-1
Change in the magnetic configurations of tubular nanostructures by tuning dipolar interactions
H. Salinas (2018)
10.1103/PhysRevB.93.054418
Dzyaloshinskii-Moriya domain walls in magnetic nanotubes
A. Goussev (2016)
10.1109/INTMAG.2015.7156673
Magnetic soft x-ray tomography of magnetic Swiss roll architectures
R. Streubel (2015)
10.21468/SciPostPhys.9.4.043
Curvature effects on phase transitions in chiral magnets
K. V. Yershov (2020)
10.21468/SciPostPhys.5.4.038
Flux-closure domains in high aspect ratio electroless-deposited CoNiB nanotubes
M. Stavno (2017)
Semantic Scholar Logo Some data provided by SemanticScholar