Online citations, reference lists, and bibliographies.
← Back to Search

Silicon Nanoparticles As Hyperpolarized Magnetic Resonance Imaging Agents.

J. W. Aptekar, M. Cassidy, A. C. Johnson, Robert A. Barton, M. Lee, A. C. Ogier, C. Vo, M. Anahtar, Yin Ren, S. Bhatia, C. Ramanathan, D. Cory, A. L. Hill, R. Mair, M. Rosen, R. Walsworth, C. Marcus
Published 2009 · Materials Science, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
Magnetic resonance imaging of hyperpolarized nuclei provides high image contrast with little or no background signal. To date, in vivo applications of prehyperpolarized materials have been limited by relatively short nuclear spin relaxation times. Here, we investigate silicon nanoparticles as a new type of hyperpolarized magnetic resonance imaging agent. Nuclear spin relaxation times for a variety of Si nanoparticles are found to be remarkably long, ranging from many minutes to hours at room temperature, allowing hyperpolarized nanoparticles to be transported, administered, and imaged on practical time scales. Additionally, we demonstrate that Si nanoparticles can be surface functionalized using techniques common to other biologically targeted nanoparticle systems. These results suggest that Si nanoparticles can be used as a targetable, hyperpolarized magnetic resonance imaging agent with a large range of potential applications.
This paper references
10.1016/j.acra.2008.01.008
Human pulmonary imaging and spectroscopy with hyperpolarized 129Xe at 0.2T.
S. Patz (2008)
J. S. Molecular Imaging Using Hyperpolarized 13C. Br. J. Radiol
K Golman (2003)
10.1038/nbt994
In vivo cancer targeting and imaging with semiconductor quantum dots
X. Gao (2004)
10.1073/pnas.152463399
Nanocrystal targeting in vivo
M. Akerman (2002)
10.1038/nmat2398
Biodegradable luminescent porous silicon nanoparticles for in vivo applications.
J. Park (2009)
10.1557/JMR.1995.0139
THE STRUCTURE AND PROPERTY CHARACTERISTICS OF AMORPHOUS NANOCRYSTALLINE SILICON PRODUCED BY BALL-MILLING
Tongde Shen (1995)
10.1021/ja076069p
Compact biocompatible quantum dots functionalized for cellular imaging.
W. Liu (2008)
J. P. Human Pulmonary Imaging and Spectroscopy Acad. Radiol
S Patz (2008)
10.1007/S00723-008-0136-2
DNP-Hyperpolarized 13C Magnetic Resonance Metabolic Imaging for Cancer Applications
S. J. Nelson (2008)
RoomTemperature Preparation and Characterization of Poly(ethylene glycol)-Coated Silica Nanoparticles for Biomedical Applications
H. Xu (2003)
10.1002/JBM.A.10057
Room-temperature preparation and characterization of poly (ethylene glycol)-coated silica nanoparticles for biomedical applications.
Hao Xu (2003)
10.1073/pnas.0610298104
Biomimetic amplification of nanoparticle homing to tumors
D. Simberg (2007)
J. Magn. Reson., Ser. B
Mr Xe (1996)
10.1143/JJAP.10.52
Study of Silicon-Silicon Dioxide Structure by Electron Spin Resonance II
Y. Nishi (1971)
Particle Size Distribution by Centrifugal Sedimentation
C. Brown (1944)
10.1126/SCIENCE.1131847
Molecular Imaging Using a Targeted Magnetic Resonance Hyperpolarized Biosensor
L. Schröder (2006)
InVivo Cancer Targeting and Imaging with Semiconductor Quantum Dots
X. Gao (2004)
10.1103/PhysRevLett.100.127601
Dynamic nuclear polarization in silicon microparticles.
A. Dementyev (2008)
10.1103/PHYSREVB.71.014401
Coherence time of decoupled nuclear spins in silicon
T. Ladd (2005)
10.1002/PSSA.200461106
Chemical modification of silicon surfaces for biological applications
M. Schwartz (2005)
Human Pulmonary Imaging and Spectroscopy with Hyperpolarized Xe-129
S. Patz (2008)
10.1016/S0168-3659(97)00237-X
Delivery of molecular and cellular medicine to solid tumors.
Jain (1997)
10.1021/LA061240G
Optimization of silica silanization by 3-aminopropyltriethoxysilane.
J. Howarter (2006)
10.1021/CM071368Z
Synthesis of water-soluble and functionalized nanoparticles by silica coating
N. R. Jana (2007)
10.1038/nnano.2008.34
Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications.
E. Tasciotti (2008)
10.1021/BC015549H
High throughput magnetic resonance imaging for evaluating targeted nanoparticle probes.
D. Högemann (2002)
Synthesis of Water - Soluble and Functionalized Nanoparticles by Silica Coat
N. R. Jana (2007)
10.1038/nnano.2008.30
Nanoparticle-mediated cellular response is size-dependent.
W. Jiang (2008)
10.1016/J.BIOMATERIALS.2004.10.012
Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications.
A. Gupta (2005)
Nuclear Magnetic Resonance of Si 29 in nand p - Type Silicon
R. G. Shulman (1956)
10.1038/nbt1159
Cell-specific targeting of nanoparticles by multivalent attachment of small molecules
R. Weissleder (2005)
10.1259/BJR/26631666
Molecular imaging using hyperpolarized 13C.
K. Golman (2003)
Nanotechnology: Opportunities and Challenges
M. Meyyappan (2003)
10.1073/pnas.0606749103
Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin
T. Atanasijevic (2006)
Nuclear Magnetic Resonance of Si29 in n- and p-Type Silicon
R. Shulman (1956)
Human pulmonary imaging and spectroscopy with hyperpolarized Xe-129 at 0.2 T. Acad. Radiol
S Patz (2008)
10.1038/nrc1566
Cancer nanotechnology: opportunities and challenges
M. Ferrari (2005)
10.1016/J.JCIS.2007.02.024
Synthesis of poly(ethylene glycol) (PEG)-grafted colloidal silica particles with improved stability in aqueous solvents.
Zhenkun Zhang (2007)
10.1006/JMRB.1996.0173
Gradient-Echo Imaging Considerations for Hyperpolarized 129Xe MR
Zhao (1996)
* These authors contributed equally to this work.
(2008)
Pines, A. Molecular Imaging Using a Targeted Magnetic Resonance Hyperpolarized Biosensor. Science
L Schrö Der (2006)
Study of SiliconSilicon Dioxide Structure by Electron Spin Resonance I
Y. Nishi (1971)
10.1002/CMR.1014
Hyperpolarized 3 He gas production and MR imaging of the lung
J. C. Leawoods (2001)
10.1148/RADIOLOGY.175.2.2326474
Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging.
R. Weissleder (1990)
10.1073/pnas.2232479100
Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance
L. R. Hirsch (2003)
AND NOTES
Nanocrystal Targeting In-Vivo. Proc. Natl. Acad. Sci. U.S.A
M E Akerman (2002)
10.1103/PhysRevB.77.214306
Intrinsic origin of spin echoes in dipolar solids generated by strong π pulses
D. Li (2008)



This paper is referenced by
10.3390/app10144992
Spin-Dependent Phenomena in Semiconductor Micro-and Nanoparticles—From Fundamentals to Applications
V. M. Fomin (2020)
Switchable resonant hyperpolarization transfer from phosphorus-31 nuclei to silicon-29 nuclei in natural silicon
P. Dluhy (2015)
10.1002/chem.201100641
Synthesis and modification of silicon nanosheets and other silicon nanomaterials.
H. Okamoto (2011)
10.1088/0957-4484/27/49/495705
Synthesis of Fe3O4@nickel-silicate core-shell nanoparticles for His-tagged enzyme immobilizing agents.
Moo-Kwang Shin (2016)
10.1002/mrc.3832
Para‐hydrogen induced polarization of Si‐29 NMR resonances as a potentially useful tool for analytical applications
S. Ellena (2012)
Development of Silicon-Coated Superparamagnetic Iron Oxide Nanoparticles for Targeted Molecular Imaging and Hyperthermic Therapy of Prostate Cancer
N. Whiting (2015)
10.1117/12.2082252
Developing hyperpolarized silicon particles for advanced biomedical imaging applications
N. Whiting (2015)
10.1039/C5TB00841G
Metallic nanoparticles as synthetic building blocks for cancer diagnostics: from materials design to molecular imaging applications.
V. Mirabello (2015)
SynthesisofLongT 1 SiliconNanoparticles for Hyperpolarized 29 Si Magnetic Resonance Imaging
Tonya M. Atkins (2013)
10.1038/nnano.2013.65
In vivo magnetic resonance imaging of hyperpolarized silicon particles.
M. Cassidy (2013)
10.1021/acs.nanolett.8b05114
Two-Electron-Spin Ratchets as a Platform for Microwave-Free Dynamic Nuclear Polarization of Arbitrary Material Targets.
P. R. Zangara (2019)
10.1080/05704928.2019.1676255
Applications and perspective of silicon particles in hyperpolarized 29Si magnetic resonance imaging
Quy Son Luu (2020)
10.1021/ACS.JPCC.7B07283
Blue Light-Emitting Si Quantum Dots with Mesoporous and Amorphous Features: Origin of Photoluminescence and Potential Applications
A. Guleria (2017)
10.1039/C5TC02956B
Substitution of silicon within the rhombohedral boron carbide (B4C) crystal lattice through high-energy ball-milling
M. Kolel-Veetil (2015)
10.1016/B978-0-323-41532-3.00010-5
Engineered nanomaterials for biomedicine: Advancements and hazards
Narinder Singh (2016)
10.1016/B978-0-12-411638-2.00009-4
Developing MR probes for molecular imaging.
M. McMahon (2014)
10.1021/acs.jpcc.6b11065
Chemisorption of Water on the Surface of Silicon Microparticles Measured by Dynamic Nuclear Polarization Enhanced NMR
Mallory L. Guy (2017)
10.1038/s41598-017-08709-0
Nanometer size silicon particles for hyperpolarized MRI
G. Kwiatkowski (2017)
10.1002/chem.201405253
NMR hyperpolarization techniques for biomedicine.
P. Nikolaou (2015)
Diamonds On The Inside: Imaging Nanodiamonds With Hyperpolarized MRI
D. E. J. Waddington (2017)
10.1063/1.5006846
Investigation of proton spin relaxation in water with dispersed silicon nanoparticles for potential magnetic resonance imaging applications
Yu. V. Kargina (2018)
10.1039/c2nr31002c
Bioconjugation of luminescent silicon quantum dots to gadolinium ions for bioimaging applications.
Folarin Erogbogbo (2012)
10.1002/nbm.2873
NMR of hyperpolarised probes
C. Witte (2013)
Overhauser Dynamic Nuclear Polarization to Study Hydration Dynamics
S. Barbara (2010)
10.1002/mrm.28400
Multifield and inverse‐contrast switching of magnetocaloric high contrast ratio MRI labels
M. Barbic (2020)
Optimal control in an open quantum system : selecting DNP pathways in an electron-nuclear system
S. Sheldon (2013)
10.1021/la303482s
Size-dependent color tuning of efficiently luminescent germanium nanoparticles.
Naoto Shirahata (2013)
10.1016/j.ssnmr.2019.04.001
Endogenous dynamic nuclear polarization NMR of hydride-terminated silicon nanoparticles.
Michelle Ha (2019)
10.1523/JNEUROSCI.4050-15.2016
Molecular fMRI
B. B. Bartelle (2016)
10.1593/NEO.101102
Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation to clinical research.
J. Kurhanewicz (2011)
10.1002/anie.201703758
Frozen Acrylamide Gels as Dynamic Nuclear Polarization Matrices.
Jasmine Viger-Gravel (2017)
10.1007/978-3-642-40412-2_22
New Molecular and Functional Imaging Techniques
V. Gómez-Vallejo (2014)
See more
Semantic Scholar Logo Some data provided by SemanticScholar