Online citations, reference lists, and bibliographies.
← Back to Search

Review Micromechanical Testing Of Bone Trabeculae - Potentials And Limitations

E. Lucchinetti, D. Thomann, G. Danuser
Published 2000 · Materials Science

Save to my Library
Download PDF
Analyze on Scholarcy
Share
The mechanical properties of bone are studied mostly for reasons related to skeletal pathology. However, bone is also very interesting from a material science perspective because it is a natural hierarchical composite material. The mechanical properties of bone depend on both the structural arrangement and the properties of the constituting materials, namely the organic polymer collagen and the inorganic salt apatite. While the mechanical properties of bone samples at the macroscopic scale are measured routinely, mechanical tests on micrometer-sized specimens are still at development stage. In this paper, protocols for measuring the elasticity of cancellous bone trabeculae are reviewed. The published values for the elastic modulus of trabeculae vary between 1 GPa and 15 GPa. Reasons for this broad range of values may be located in the intrinsic difficulties of preparing, handling, and testing inhomogeneous, anisotropic and asymmetric micro-samples. We discuss the major error sources in existing testing procedures and suggest potential strategies to enhance their performance.
This paper references
10.1016/0021-9290(88)90008-5
On the dependence of the elasticity and strength of cancellous bone on apparent density.
J. Rice (1988)
10.1016/0021-9290(88)90257-6
Limitations of the continuum assumption in cancellous bone.
T. Harrigan (1988)
10.1126/SCIENCE.2321027
Two-photon laser scanning fluorescence microscopy.
W. Denk (1990)
10.1016/0021-9290(91)90333-I
The underestimation of Young's modulus in compressive testing of cancellous bone specimens.
A. Odgaard (1991)
10.1016/0021-9290(93)90042-D
Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements.
J. Rho (1993)
10.1002/JOR.1100160105
Relationships between bone morphology and bone elastic properties can be accurately quantified using high‐resolution computer reconstructions
B. van Rietbergen (1998)
10.1016/0021-9290(84)90029-0
A continuous wave technique for the measurement of the elastic properties of cortical bone.
R. B. Ashman (1984)
10.1007/BF00540446
Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor
T. Harrigan (1984)
10.1016/S0021-9290(99)00045-7
The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone.
J. Kabel (1999)
10.1016/0002-9416(58)90096-4
The biochemistry and physiology of bone
G. H. Bourne (1956)
10.1115/1.3108433
Errors induced by off-axis measurement of the elastic properties of bone.
C. Turner (1988)
10.1046/J.1365-2818.2000.00678.X
Tracking differential interference contrast diffraction line images with nanometre sensitivity.
G. Danuser (2000)
10.1002/JOR.1100070614
Comparison of the trabecular and cortical tissue moduli from human iliac crests
J. L. Kuhn (1989)
10.1016/0021-9290(87)90327-7
Elastic properties of cancellous bone: measurement by an ultrasonic technique.
R. B. Ashman (1987)
10.1016/0021-9290(89)90066-3
Compressive axial strain distributions in cancellous bone specimens.
A. Odgaard (1989)
10.1016/S0021-9290(99)00115-3
The impact of boundary conditions and mesh size on the accuracy of cancellous bone tissue modulus determination using large-scale finite-element modeling
C. Jacobs (1999)
10.1118/1.598736
A synchrotron radiation microtomography system for the analysis of trabecular bone samples.
M. Salomé (1999)
Basic human anatomy
C. Tobin (1972)
10.1038/374555A0
Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution
T. Funatsu (1995)
10.1016/0021-9290(90)90003-L
The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus.
K. Choi (1990)
10.1016/0021-9290(91)90305-7
Mechanical properties of trabecular bone. Dependency on strain rate.
F. Linde (1991)
10.1136/jcp.20.5.717
Autofluorescence of bone tissues
A. Prentice (1967)
10.1016/0021-9290(89)90001-8
Identification of the elastic symmetry of bone and other materials.
S. Cowin (1989)
10.1016/0021-9290(89)90049-3
Tensile testing of rodlike trabeculae excised from bovine femoral bone.
S. Ryan (1989)
10.1038/2061328A0
Fluorescence of Bone
CHARLES H. Bachman (1965)
10.1055/S-0028-1144106
Das Gesetz der Transformation der Knochen
J. Wolff (1893)
10.1016/S0021-9290(98)00110-9
Human vertebral body apparent and hard tissue stiffness.
F. Hou (1998)
10.1016/0021-9290(87)90023-6
The mechanical properties of trabecular bone: dependence on anatomic location and function.
S. Goldstein (1987)
10.1038/2061167a0
Bone Autofluorescence and Mineral Content
A. Prentice (1965)
10.1016/0021-9290(88)90167-4
Elastic modulus of trabecular bone material.
R. B. Ashman (1988)
10.1111/j.1365-2818.1974.tb03878.x
The quantitative morphology of anisotropic trabecular bone
W. Whitehouse (1974)
10.1007/BF02411304
Size and density of osteocyte lacunae in different regions of long bones
V. Canè (2006)
10.1016/0021-9290(95)80008-5
A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models.
B. van Rietbergen (1995)
10.1016/S8756-3282(95)00241-3
Alterations to the en bloc basic fuchsin staining protocol for the demonstration of microdamage produced in vivo.
D. Burr (1995)
10.1002/JOR.1100160516
Finite‐element modeling of trabecular bone: Comparison with mechanical testing and determination of tissue modulus
A. J. Ladd (1998)



This paper is referenced by
Effects of geometric and material property changes on the apparent elastic properties of cancellous bone
W. Lievers (2009)
10.1016/J.BONE.2005.07.019
Trabecular microfracture and the influence of pyridinium and non-enzymatic glycation-mediated collagen cross-links.
C. Hernandez (2005)
10.1143/JJAP.49.07HB05
Measurement of Wave Velocity Distribution in a Trabecula by Micro-Brillouin Scattering Technique
M. Kawabe (2010)
10.1016/J.BONE.2006.02.070
Strength of cancellous bone trabecular tissue from normal, ovariectomized and drug-treated rats over the course of ageing.
L. McNamara (2006)
10.3929/ETHZ-A-005339099
New method to determine the Young's modulus of single trabeculae
S. Lorenzetti (2006)
10.1016/j.jmbbm.2016.08.016
Contribution of fluid in bone extravascular matrix to strain-rate dependent stiffening of bone tissue - A poroelastic study.
Solenn Le Pense (2017)
10.1177/0954411920936057
Prediction of failure in cancellous bone using extended finite element method
M. Salem (2020)
10.3929/ethz-a-010163341
Post-yield mechanics and material composition of single trabeculae - a combined experimental and modelling approach
R. Carretta (2014)
10.1007/s10237-020-01329-0
A two-layer elasto-visco-plastic rheological model for the material parameter identification of bone tissue
A. Reisinger (2020)
10.1123/JAB.23.3.230
Computational determination of the critical microcrack size that causes a remodeling response in a trabecula: a feasibility study.
A. Gefen (2007)
10.1016/j.jmbbm.2018.07.039
Dehydration of individual bovine trabeculae causes transition from ductile to quasi-brittle failure mode.
M. Frank (2018)
10.1016/J.PMATSCI.2012.03.001
Biological materials: Functional adaptations and bioinspired designs
Po-Yu Chen (2012)
10.1016/j.bone.2009.08.002
Increased calcium content and inhomogeneity of mineralization render bone toughness in osteoporosis: mineralization, morphology and biomechanics of human single trabeculae.
B. Busse (2009)
10.1007/s10237-019-01254-x
Efficient materially nonlinear [Formula: see text]FE solver for simulations of trabecular bone failure.
Monika Stipsitz (2019)
Influence de l’hétérogénéité des propriétés mécaniques sur la résistance de l’os trabéculaire humain
B. Dépalle (2011)
Mechanical analyses of trabecular bone and its interaction with implants
Wu Dan (2019)
10.1016/J.JEURCERAMSOC.2016.01.042
Mechanical characterization of glass-ceramic scaffolds at multiple characteristic lengths through nanoindentation
M. Shahgholi (2016)
Real-time microdamage and strain detection during micromechanical testing of single trabeculae
R. Jungmann (2007)
10.1016/j.jmbbm.2011.08.003
Structure and micro-computed tomography-based finite element modeling of Toucan beak.
Y. Seki (2012)
10.2316/P.2017.852-023
Mechanical properties of individual trabeculae in a physiological environment
M. Frank (2017)
10.1557/mrs.2015.160
Biological Materials Science: Biological Materials, Bioinspired Materials, and Biomaterials
M. Meyers (2014)
Analyses of trabecular bone failure
E. E. Verhulp (2006)
10.1121/1.4730329
Comparative investigation of elastic properties in a trabecula using micro-Brillouin scattering and scanning acoustic microscopy.
M. Kawabe (2012)
10.1016/B978-0-12-801238-3.99937-9
Bone Micro- and Nanomechanics
C. Collins (2014)
10.1016/j.jmbbm.2010.12.009
Local strain and damage mapping in single trabeculae during three-point bending tests.
R. Jungmann (2011)
10.1016/j.jbiomech.2014.09.009
Nanostructure and elastic modulus of single trabecula in bovine cancellous bone.
Satoshi Yamada (2014)
10.1016/j.jmbbm.2013.04.014
Within subject heterogeneity in tissue-level post-yield mechanical and material properties in human trabecular bone.
R. Carretta (2013)
10.1002/9781119084501.CH10
Nanoindentation of Hybrid Foams
A. Jung (2017)
10.1016/j.actbio.2018.08.001
Young's modulus of trabecular bone at the tissue level: A review.
D. Wu (2018)
10.1142/9789812794093_0046
Micromechanical Testing of Bone Tissues in Tension
X. Wang (2008)
10.1002/cnm.2516
Towards patient-specific material modeling of trabecular bone post-yield behavior.
R. Carretta (2013)
10.1016/j.jbiomech.2016.10.016
Micro-cantilever bending for elastic modulus measurements of a single trabecula in cancellous bone.
Satoshi Yamada (2016)
See more
Semantic Scholar Logo Some data provided by SemanticScholar