← Back to Search

DOI: 10.1038/nature11770

# Towards An Exact Description Of Electronic Wavefunctions In Real Solids

G. Booth, A. Grüneis, G. Kresse, A. Alavi

Published 2013 · Physics, Medicine

The properties of all materials arise largely from the quantum mechanics of their constituent electrons under the influence of the electric field of the nuclei. The solution of the underlying many-electron Schrödinger equation is a ‘non-polynomial hard’ problem, owing to the complex interplay of kinetic energy, electron–electron repulsion and the Pauli exclusion principle. The dominant computational method for describing such systems has been density functional theory. Quantum-chemical methods—based on an explicit ansatz for the many-electron wavefunctions and, hence, potentially more accurate—have not been fully explored in the solid state owing to their computational complexity, which ranges from strongly exponential to high-order polynomial in system size. Here we report the application of an exact technique, full configuration interaction quantum Monte Carlo to a variety of real solids, providing reference many-electron energies that are used to rigorously benchmark the standard hierarchy of quantum-chemical techniques, up to the ‘gold standard’ coupled-cluster ansatz, including single, double and perturbative triple particle–hole excitation operators. We show the errors in cohesive energies predicted by this method to be small, indicating the potential of this computationally polynomial scaling technique to tackle current solid-state problems.

This paper references

Density Functional Theory in Inorganic Chemistry, Structure and Bonding (eds McGrady

F Cora (2004)

the case of LiH

Usvyat (2011)

Density Functional Theory in Inorganic Chemistry

F Cora (2004)

10.1103/PhysRevLett.100.126404

Finite-size correction in many-body electronic structure calculations.

Hendra Kwee (2008)

a study of ionization potentials

G. H. Booth (2010)

10.1103/PhysRevE.74.066701

Inhomogeneous backflow transformations in quantum Monte Carlo calculations.

P. López Ríos (2006)

10.1063/1.2770707

Bond breaking with auxiliary-field quantum Monte Carlo.

W. A. Al-Saidi (2007)

10.1103/PhysRevB.82.165431

Bulk and surface energetics of crystalline lithium hydride: Benchmarks from quantum Monte Carlo and quantum chemistry

S. Binnie (2010)

10.1103/PHYSREV.46.618

Note on an Approximation Treatment for Many-Electron Systems

C. Møller (1934)

10.1063/1.3595514

Approaching the theoretical limit in periodic local MP2 calculations with atomic-orbital basis sets: the case of LiH.

D. Usvyat (2011)

10.1063/1.3396079

Communications: Explicitly correlated second-order Møller-Plesset perturbation method for extended systems.

T. Shiozaki (2010)

Krakauer,H.Bondbreakingwith auxiliary-fieldquantum Monte Carlo

W. A. Al-Saidi (2007)

10.1063/1.3126249

Second-order Møller-Plesset perturbation theory applied to extended systems. I. Within the projector-augmented-wave formalism using a plane wave basis set.

M. Marsman (2009)

contributed equally to this work.

(2010)

acknowledges support from Trinity College

G H B Acknowledgements

10.1021/ct200263g

Natural Orbitals for Wave Function Based Correlated Calculations Using a Plane Wave Basis Set.

A. Grüneis (2011)

10.1063/1.457480

Error estimates on averages of correlated data

H. Flyvbjerg (1989)

10.1021/ct3003404

Multideterminant Wave Functions in Quantum Monte Carlo.

M. A. Morales (2012)

10.1088/0953-8984/22/7/074201

Comparison of the incremental and hierarchical methods for crystalline neon.

S. Nolan (2010)

the caseof lithiumhydride

S. Casassa (2007)

10.4236/WJCMP.2013.34034

A Quantum Monte Carlo Study of Lanthanum

Nagat Elkahwagy (2013)

the caseof lithiumhydride

S. Casassa (2007)

10.1063/1.1311294

Full configuration interaction benchmarking of coupled-cluster models for the lowest singlet energy surfaces of N2

H. Larsen (2000)

10.1063/1.3524336

Improved hybrid functional for solids: the HSEsol functional.

L. Schimka (2011)

the challenges of multiple bond dissociation with full configuration interaction quantum Monte Carlo methods

G. H. Booth (2011)

Bulk and surface energetics of crystalline lithium hydride : benchmarks fromquantumMonteCarlo andquantumchemistry

S. J. Binnie (2010)

10.1063/1.3687003

Approaching the bulk limit with finite cluster calculations using local increments: the case of LiH.

H. Stoll (2012)

benchmarks from quantum Monte Carlo and quantum chemistry

Binnie (2010)

10.1021/cr200107z

Challenges for density functional theory.

Aron J. Cohen (2012)

10.1063/1.3681396

The sign problem and population dynamics in the full configuration interaction quantum Monte Carlo method.

J. Spencer (2012)

the HSEsol functional

L. Schimka (2011)

10.1063/1.3407895

Approaching chemical accuracy using full configuration-interaction quantum Monte Carlo: a study of ionization potentials.

G. Booth (2010)

Survival of the fittest : accelerating convergence in full configuration - interaction quantum Monte Carlo

D. Cleland (2010)

10.1063/1.3624383

Breaking the carbon dimer: the challenges of multiple bond dissociation with full configuration interaction quantum Monte Carlo methods.

G. Booth (2011)

Krakauer,H.Bondbreakingwith auxiliary-fieldquantum Monte Carlo

W. A. Al-Saidi (2007)

10.1103/PHYSREVB.80.165109

Calculation of properties of crystalline lithium hydride using correlated wave function theory

S. Nolan (2009)

10.1016/S0009-2614(89)87395-6

A fifth-order perturbation comparison of electron correlation theories

K. Raghavachari (1989)

10.1063/1.1727484

On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods

J. Č́ıžek (1966)

10.1103/PhysRevB.80.214116

Pressure-induced diamond to β-tin transition in bulk silicon: A quantum Monte Carlo study

W. Purwanto (2009)

the case of LiH

H. Stoll (2012)

10.1103/PHYSREVB.76.075101

Fast local-MP2 method with density-fitting for crystals. I. Theory and algorithms

L. Maschio (2007)

10.1103/PHYSREVLETT.77.3865

Generalized Gradient Approximation Made Simple.

Perdew (1996)

10.1063/1.3455717

Logarithm second-order many-body perturbation method for extended systems.

Yu-ya Ohnishi (2010)

10.1103/PhysRevB.79.155107

Assessing the performance of recent density functionals for bulk solids

G. Csonka (2009)

10.1103/PhysRevLett.94.170201

Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations

M. Troyer (2005)

10.1016/0009-2614(84)85513-X

A new determinant-based full configuration interaction method

P. Knowles (1984)

10.1063/1.1414369

Atomic orbital Laplace-transformed second-order Møller–Plesset theory for periodic systems

P. Y. Ayala (2001)

10.1063/1.3466765

Second-order Møller-Plesset perturbation theory applied to extended systems. II. Structural and energetic properties.

A. Grüneis (2010)

10.1063/1.3288054

Benchmark all-electron ab initio quantum Monte Carlo calculations for small molecules.

N. Nemec (2010)

10.1007/S00214-006-0198-X

Beyond a Hartree–Fock description of crystalline solids: the case of lithium hydride

S. Casassa (2007)

10.1103/PhysRevB.85.081103

A Full Configuration Interaction Perspective on the Homogeneous Electron Gas

J. Shepherd (2012)

10.1063/1.3302277

Communications: Survival of the fittest: accelerating convergence in full configuration-interaction quantum Monte Carlo.

D. Cleland (2010)

10.1063/1.3193710

Fermion Monte Carlo without fixed nodes: a game of life, death, and annihilation in Slater determinant space.

G. Booth (2009)

J. Chem. Phys

(2012)

10.1063/1.3525712

A study of electron affinities using the initiator approach to full configuration interaction quantum Monte Carlo.

D. Cleland (2011)

10.1002/CHIN.199942310

Quantum Chemical Models (Nobel Lecture)

J. Pople (1999)

10.1021/ct300544e

A Simple, Exact Density-Functional-Theory Embedding Scheme

F. R. Manby (2012)

10.1021/cr200168z

Explicitly correlated electrons in molecules.

C. Hättig (2012)

10.1103/PHYSREVB.6.3447

Measurement of Spin-Wave Dispersion in NiO by Inelastic Neutron Scattering and Its Relation to Magnetic Properties

M. Hutchings (1972)

10.1007/978-3-540-68651-4_4

Theory and Algorithms

P. Schlattmann (2009)

Density Functional Theory in Inorganic Chemistry, Structure and Bonding (eds McGrady

F Cora (2004)

the HSEsol functional

L. Schimka (2011)

Fast local - MP 2 method with density - fitting for crystals . I . Theory and algorithms

L. Maschio (2007)

10.1039/c2cp24020c

Wavefunction-based electron correlation methods for solids.

C. Müller (2012)

10.1103/REVMODPHYS.71.1253

Nobel Lecture: Electronic structure of matter-wave functions and density functionals

W. Kohn (1999)

10.1103/REVMODPHYS.71.1267

Nobel Lecture: Quantum chemical models

J. Pople (1999)

This paper is referenced by

10.1002/ANGE.201506874

Von atomistischer Oberflächenchemie zu Nanokristallen funktionaler Chalkogenide

V. Deringer (2015)

10.1016/BS.AIQ.2019.04.003

Computing accurate molecular properties in real space using multiresolution analysis

Florian A. Bischoff (2019)

10.1063/1.4919397

Combining density functional and incremental post-Hartree-Fock approaches for van der Waals dominated adsorbate-surface interactions: Ag2/graphene.

M. P. de Lara-Castells (2015)

10.1063/1.4820404

Computing molecular correlation energies with guaranteed precision.

Florian A. Bischoff (2013)

10.1002/QUA.25057

Thermodynamics of gas adsorption in MOFs using Ab Initio calculations

R. Poloni (2016)

10.1021/acs.jctc.0c00165

General correlated geminal ansatz for electronic structure calculations: exploiting Pfaffians in place of determinants.

C. Genovese (2020)

Ground state and dynamical properties of many{body systems by non conventional Quantum Monte Carlo algorithms

F. Pederiva (2014)

10.1021/acsomega.8b03135

Cost-Effective Quantum Mechanical Approach for Predicting Thermodynamic and Mechanical Stability of Pure-Silica Zeolites

M. Cutini (2019)

10.1021/acs.jctc.9b00762

Analytical Gradient Theory for Strongly Contracted (SC) and Partially Contracted (PC) N-Electron Valence State Perturbation Theory (NEVPT2).

J. W. Park (2019)

10.1038/S41570-0017

Competition of van der Waals and chemical forces on gold–sulfur surfaces and nanoparticles

J. Reimers (2017)

10.1103/PHYSREVB.100.075103

Deuterium Hugoniot: Pitfalls of thermodynamic sampling beyond density functional theory

Raymond Clay (2019)

10.1016/BS.AIQ.2017.06.004

Extension of the Configuration Interaction Monte Carlo Method to Atoms and Molecules

A. Roggero (2017)

10.1063/1.4901020

Excited states from quantum Monte Carlo in the basis of Slater determinants.

A. Humeniuk (2014)

10.1063/1.4930182

Preface: Special Topic Section on Advanced Electronic Structure Methods for Solids and Surfaces.

A. Michaelides (2015)

10.17863/CAM.48392

Accelerating Stochastic Quantum Chemistry

V. Neufeld (2020)

10.1080/0144235X.2019.1558623

The quantum nature of hydrogen

Wei Fang (2018)

10.1088/1367-2630/aa631f

A stochastic root finding approach: the homotopy analysis method applied to Dyson–Schwinger equations

T. Pfeffer (2017)

10.1002/wcms.1357

Periodic and fragment models based on the local correlation approach

D. Usvyat (2018)

10.1021/acs.jctc.8b01294

Massive-parallel Implementation of the Resolution-of-Identity Coupled-cluster Approaches in the Numeric Atom-centered Orbital Framework for Molecular Systems.

Tonghao Shen (2019)

10.1103/PhysRevLett.119.135001

Ab initio Exchange-Correlation Free Energy of the Uniform Electron Gas at Warm Dense Matter Conditions.

S. Groth (2017)

10.1063/5.0029863

Four-component full configuration interaction quantum Monte Carlo for relativistic correlated electron problems.

R. J. Anderson (2020)

10.1103/PhysRevLett.123.156401

Duality of Ring and Ladder Diagrams and Its Importance for Many-Electron Perturbation Theories.

Andreas Irmler (2019)

10.1021/acs.jctc.9b00456

Many-Body Expanded Full Configuration Interaction. II. Strongly Correlated Regime.

J. J. Eriksen (2019)

10.1071/CH16489

Putting David Craig’s Legacy to Work in Nanotechnology and Biotechnology*

J. Reimers (2016)

Theory and Applications of Quantum Monte Carlo

Michael J. Deible (2015)

10.1063/1.4984048

A comparison between quantum chemistry and quantum Monte Carlo techniques for the adsorption of water on the (001) LiH surface

T. Tsatsoulis (2017)

10.1021/acs.jctc.7b01257

Combining the Transcorrelated Method with Full Configuration Interaction Quantum Monte Carlo: Application to the Homogeneous Electron Gas.

Hongjun Luo (2018)

10.1103/PhysRevB.101.241113

First-principles coupled cluster theory of the electronic spectrum of transition metal dichalcogenides

A. Pulkin (2020)

10.1063/1.4919236

Adiabatic-connection fluctuation-dissipation DFT for the structural properties of solids-The renormalized ALDA and electron gas kernels.

C. F. Patrick (2015)

10.1063/1.4939752

Quasi-degenerate perturbation theory using matrix product states.

S. Sharma (2016)

10.1063/1.4802766

Stochastic determination of effective Hamiltonian for the full configuration interaction solution of quasi-degenerate electronic states.

S. Ten-no (2013)

10.1103/PhysRevB.101.155106

Speeding up ab initio diffusion Monte Carlo simulations by a smart lattice regularization

Kousuke Nakano (2020)

See more