Online citations, reference lists, and bibliographies.
← Back to Search

Towards An Exact Description Of Electronic Wavefunctions In Real Solids

G. Booth, A. Grüneis, G. Kresse, A. Alavi
Published 2013 · Physics, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
The properties of all materials arise largely from the quantum mechanics of their constituent electrons under the influence of the electric field of the nuclei. The solution of the underlying many-electron Schrödinger equation is a ‘non-polynomial hard’ problem, owing to the complex interplay of kinetic energy, electron–electron repulsion and the Pauli exclusion principle. The dominant computational method for describing such systems has been density functional theory. Quantum-chemical methods—based on an explicit ansatz for the many-electron wavefunctions and, hence, potentially more accurate—have not been fully explored in the solid state owing to their computational complexity, which ranges from strongly exponential to high-order polynomial in system size. Here we report the application of an exact technique, full configuration interaction quantum Monte Carlo to a variety of real solids, providing reference many-electron energies that are used to rigorously benchmark the standard hierarchy of quantum-chemical techniques, up to the ‘gold standard’ coupled-cluster ansatz, including single, double and perturbative triple particle–hole excitation operators. We show the errors in cohesive energies predicted by this method to be small, indicating the potential of this computationally polynomial scaling technique to tackle current solid-state problems.
This paper references
Density Functional Theory in Inorganic Chemistry, Structure and Bonding (eds McGrady
F Cora (2004)
the case of LiH
Usvyat (2011)
Density Functional Theory in Inorganic Chemistry
F Cora (2004)
10.1103/PhysRevLett.100.126404
Finite-size correction in many-body electronic structure calculations.
Hendra Kwee (2008)
a study of ionization potentials
G. H. Booth (2010)
10.1103/PhysRevE.74.066701
Inhomogeneous backflow transformations in quantum Monte Carlo calculations.
P. López Ríos (2006)
10.1063/1.2770707
Bond breaking with auxiliary-field quantum Monte Carlo.
W. A. Al-Saidi (2007)
10.1103/PhysRevB.82.165431
Bulk and surface energetics of crystalline lithium hydride: Benchmarks from quantum Monte Carlo and quantum chemistry
S. Binnie (2010)
10.1103/PHYSREV.46.618
Note on an Approximation Treatment for Many-Electron Systems
C. Møller (1934)
10.1063/1.3595514
Approaching the theoretical limit in periodic local MP2 calculations with atomic-orbital basis sets: the case of LiH.
D. Usvyat (2011)
10.1063/1.3396079
Communications: Explicitly correlated second-order Møller-Plesset perturbation method for extended systems.
T. Shiozaki (2010)
Krakauer,H.Bondbreakingwith auxiliary-fieldquantum Monte Carlo
W. A. Al-Saidi (2007)
10.1063/1.3126249
Second-order Møller-Plesset perturbation theory applied to extended systems. I. Within the projector-augmented-wave formalism using a plane wave basis set.
M. Marsman (2009)
contributed equally to this work.
(2010)
acknowledges support from Trinity College
G H B Acknowledgements
10.1021/ct200263g
Natural Orbitals for Wave Function Based Correlated Calculations Using a Plane Wave Basis Set.
A. Grüneis (2011)
10.1063/1.457480
Error estimates on averages of correlated data
H. Flyvbjerg (1989)
10.1021/ct3003404
Multideterminant Wave Functions in Quantum Monte Carlo.
M. A. Morales (2012)
10.1088/0953-8984/22/7/074201
Comparison of the incremental and hierarchical methods for crystalline neon.
S. Nolan (2010)
the caseof lithiumhydride
S. Casassa (2007)
10.4236/WJCMP.2013.34034
A Quantum Monte Carlo Study of Lanthanum
Nagat Elkahwagy (2013)
the caseof lithiumhydride
S. Casassa (2007)
10.1063/1.1311294
Full configuration interaction benchmarking of coupled-cluster models for the lowest singlet energy surfaces of N2
H. Larsen (2000)
10.1063/1.3524336
Improved hybrid functional for solids: the HSEsol functional.
L. Schimka (2011)
the challenges of multiple bond dissociation with full configuration interaction quantum Monte Carlo methods
G. H. Booth (2011)
Bulk and surface energetics of crystalline lithium hydride : benchmarks fromquantumMonteCarlo andquantumchemistry
S. J. Binnie (2010)
10.1063/1.3687003
Approaching the bulk limit with finite cluster calculations using local increments: the case of LiH.
H. Stoll (2012)
benchmarks from quantum Monte Carlo and quantum chemistry
Binnie (2010)
10.1021/cr200107z
Challenges for density functional theory.
Aron J. Cohen (2012)
10.1063/1.3681396
The sign problem and population dynamics in the full configuration interaction quantum Monte Carlo method.
J. Spencer (2012)
the HSEsol functional
L. Schimka (2011)
10.1063/1.3407895
Approaching chemical accuracy using full configuration-interaction quantum Monte Carlo: a study of ionization potentials.
G. Booth (2010)
Survival of the fittest : accelerating convergence in full configuration - interaction quantum Monte Carlo
D. Cleland (2010)
10.1063/1.3624383
Breaking the carbon dimer: the challenges of multiple bond dissociation with full configuration interaction quantum Monte Carlo methods.
G. Booth (2011)
Krakauer,H.Bondbreakingwith auxiliary-fieldquantum Monte Carlo
W. A. Al-Saidi (2007)
10.1103/PHYSREVB.80.165109
Calculation of properties of crystalline lithium hydride using correlated wave function theory
S. Nolan (2009)
10.1016/S0009-2614(89)87395-6
A fifth-order perturbation comparison of electron correlation theories
K. Raghavachari (1989)
10.1063/1.1727484
On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods
J. Č́ıžek (1966)
10.1103/PhysRevB.80.214116
Pressure-induced diamond to β-tin transition in bulk silicon: A quantum Monte Carlo study
W. Purwanto (2009)
the case of LiH
H. Stoll (2012)
10.1103/PHYSREVB.76.075101
Fast local-MP2 method with density-fitting for crystals. I. Theory and algorithms
L. Maschio (2007)
10.1103/PHYSREVLETT.77.3865
Generalized Gradient Approximation Made Simple.
Perdew (1996)
10.1063/1.3455717
Logarithm second-order many-body perturbation method for extended systems.
Yu-ya Ohnishi (2010)
10.1103/PhysRevB.79.155107
Assessing the performance of recent density functionals for bulk solids
G. Csonka (2009)
10.1103/PhysRevLett.94.170201
Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations
M. Troyer (2005)
10.1016/0009-2614(84)85513-X
A new determinant-based full configuration interaction method
P. Knowles (1984)
10.1063/1.1414369
Atomic orbital Laplace-transformed second-order Møller–Plesset theory for periodic systems
P. Y. Ayala (2001)
10.1063/1.3466765
Second-order Møller-Plesset perturbation theory applied to extended systems. II. Structural and energetic properties.
A. Grüneis (2010)
10.1063/1.3288054
Benchmark all-electron ab initio quantum Monte Carlo calculations for small molecules.
N. Nemec (2010)
10.1007/S00214-006-0198-X
Beyond a Hartree–Fock description of crystalline solids: the case of lithium hydride
S. Casassa (2007)
10.1103/PhysRevB.85.081103
A Full Configuration Interaction Perspective on the Homogeneous Electron Gas
J. Shepherd (2012)
10.1063/1.3302277
Communications: Survival of the fittest: accelerating convergence in full configuration-interaction quantum Monte Carlo.
D. Cleland (2010)
10.1063/1.3193710
Fermion Monte Carlo without fixed nodes: a game of life, death, and annihilation in Slater determinant space.
G. Booth (2009)
J. Chem. Phys
(2012)
10.1063/1.3525712
A study of electron affinities using the initiator approach to full configuration interaction quantum Monte Carlo.
D. Cleland (2011)
10.1002/CHIN.199942310
Quantum Chemical Models (Nobel Lecture)
J. Pople (1999)
10.1021/ct300544e
A Simple, Exact Density-Functional-Theory Embedding Scheme
F. R. Manby (2012)
10.1021/cr200168z
Explicitly correlated electrons in molecules.
C. Hättig (2012)
10.1103/PHYSREVB.6.3447
Measurement of Spin-Wave Dispersion in NiO by Inelastic Neutron Scattering and Its Relation to Magnetic Properties
M. Hutchings (1972)
10.1007/978-3-540-68651-4_4
Theory and Algorithms
P. Schlattmann (2009)
Density Functional Theory in Inorganic Chemistry, Structure and Bonding (eds McGrady
F Cora (2004)
the HSEsol functional
L. Schimka (2011)
Fast local - MP 2 method with density - fitting for crystals . I . Theory and algorithms
L. Maschio (2007)
10.1039/c2cp24020c
Wavefunction-based electron correlation methods for solids.
C. Müller (2012)
10.1103/REVMODPHYS.71.1253
Nobel Lecture: Electronic structure of matter-wave functions and density functionals
W. Kohn (1999)
10.1103/REVMODPHYS.71.1267
Nobel Lecture: Quantum chemical models
J. Pople (1999)



This paper is referenced by
10.1002/ANGE.201506874
Von atomistischer Oberflächenchemie zu Nanokristallen funktionaler Chalkogenide
V. Deringer (2015)
10.1016/BS.AIQ.2019.04.003
Computing accurate molecular properties in real space using multiresolution analysis
Florian A. Bischoff (2019)
10.1063/1.4919397
Combining density functional and incremental post-Hartree-Fock approaches for van der Waals dominated adsorbate-surface interactions: Ag2/graphene.
M. P. de Lara-Castells (2015)
10.1063/1.4820404
Computing molecular correlation energies with guaranteed precision.
Florian A. Bischoff (2013)
10.1002/QUA.25057
Thermodynamics of gas adsorption in MOFs using Ab Initio calculations
R. Poloni (2016)
10.1021/acs.jctc.0c00165
General correlated geminal ansatz for electronic structure calculations: exploiting Pfaffians in place of determinants.
C. Genovese (2020)
Ground state and dynamical properties of many{body systems by non conventional Quantum Monte Carlo algorithms
F. Pederiva (2014)
10.1021/acsomega.8b03135
Cost-Effective Quantum Mechanical Approach for Predicting Thermodynamic and Mechanical Stability of Pure-Silica Zeolites
M. Cutini (2019)
10.1021/acs.jctc.9b00762
Analytical Gradient Theory for Strongly Contracted (SC) and Partially Contracted (PC) N-Electron Valence State Perturbation Theory (NEVPT2).
J. W. Park (2019)
10.1038/S41570-0017
Competition of van der Waals and chemical forces on gold–sulfur surfaces and nanoparticles
J. Reimers (2017)
10.1103/PHYSREVB.100.075103
Deuterium Hugoniot: Pitfalls of thermodynamic sampling beyond density functional theory
Raymond Clay (2019)
10.1016/BS.AIQ.2017.06.004
Extension of the Configuration Interaction Monte Carlo Method to Atoms and Molecules
A. Roggero (2017)
10.1063/1.4901020
Excited states from quantum Monte Carlo in the basis of Slater determinants.
A. Humeniuk (2014)
10.1063/1.4930182
Preface: Special Topic Section on Advanced Electronic Structure Methods for Solids and Surfaces.
A. Michaelides (2015)
10.17863/CAM.48392
Accelerating Stochastic Quantum Chemistry
V. Neufeld (2020)
10.1080/0144235X.2019.1558623
The quantum nature of hydrogen
Wei Fang (2018)
10.1088/1367-2630/aa631f
A stochastic root finding approach: the homotopy analysis method applied to Dyson–Schwinger equations
T. Pfeffer (2017)
10.1002/wcms.1357
Periodic and fragment models based on the local correlation approach
D. Usvyat (2018)
10.1021/acs.jctc.8b01294
Massive-parallel Implementation of the Resolution-of-Identity Coupled-cluster Approaches in the Numeric Atom-centered Orbital Framework for Molecular Systems.
Tonghao Shen (2019)
10.1103/PhysRevLett.119.135001
Ab initio Exchange-Correlation Free Energy of the Uniform Electron Gas at Warm Dense Matter Conditions.
S. Groth (2017)
10.1063/5.0029863
Four-component full configuration interaction quantum Monte Carlo for relativistic correlated electron problems.
R. J. Anderson (2020)
10.1103/PhysRevLett.123.156401
Duality of Ring and Ladder Diagrams and Its Importance for Many-Electron Perturbation Theories.
Andreas Irmler (2019)
10.1021/acs.jctc.9b00456
Many-Body Expanded Full Configuration Interaction. II. Strongly Correlated Regime.
J. J. Eriksen (2019)
10.1071/CH16489
Putting David Craig’s Legacy to Work in Nanotechnology and Biotechnology*
J. Reimers (2016)
Theory and Applications of Quantum Monte Carlo
Michael J. Deible (2015)
10.1063/1.4984048
A comparison between quantum chemistry and quantum Monte Carlo techniques for the adsorption of water on the (001) LiH surface
T. Tsatsoulis (2017)
10.1021/acs.jctc.7b01257
Combining the Transcorrelated Method with Full Configuration Interaction Quantum Monte Carlo: Application to the Homogeneous Electron Gas.
Hongjun Luo (2018)
10.1103/PhysRevB.101.241113
First-principles coupled cluster theory of the electronic spectrum of transition metal dichalcogenides
A. Pulkin (2020)
10.1063/1.4919236
Adiabatic-connection fluctuation-dissipation DFT for the structural properties of solids-The renormalized ALDA and electron gas kernels.
C. F. Patrick (2015)
10.1063/1.4939752
Quasi-degenerate perturbation theory using matrix product states.
S. Sharma (2016)
10.1063/1.4802766
Stochastic determination of effective Hamiltonian for the full configuration interaction solution of quasi-degenerate electronic states.
S. Ten-no (2013)
10.1103/PhysRevB.101.155106
Speeding up ab initio diffusion Monte Carlo simulations by a smart lattice regularization
Kousuke Nakano (2020)
See more
Semantic Scholar Logo Some data provided by SemanticScholar