Online citations, reference lists, and bibliographies.
← Back to Search

Energy Landscapes And Function Of Supramolecular Systems

Faifan Tantakitti, J. Boekhoven, X. Wang, R. Kazantsev, T. Yu, Jiahe Li, E. Zhuang, R. Zandi, Julia H. Ortony, C. Newcomb, Liam C. Palmer, G. Shekhawat, M. O. de la Cruz, G. Schatz, S. Stupp
Published 2016 · Chemistry, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
By means of two supramolecular systems - peptide amphiphiles engaged in hydrogen-bonded β-sheets, and chromophore amphiphiles driven to assemble by π-orbital overlaps - we show that the minima in the energy landscapes of supramolecular systems are defined by electrostatic repulsion and the ability of the dominant attractive forces to trap molecules in thermodynamically unfavourable configurations. These competing interactions can be selectively switched on and off, with the order of doing so determining the position of the final product in the energy landscape. Within the same energy landscape, the peptide-amphiphile system forms a thermodynamically favoured product characterized by long bundled fibres that promote biological cell adhesion and survival, and a metastable product characterized by short monodisperse fibres that interfere with adhesion and can lead to cell death. Our findings suggest that, in supramolecular systems, function and energy landscape are linked, superseding the more traditional connection between molecular design and function.
This paper references
10.1038/386259A0
Responsive gels formed by the spontaneous self-assembly of peptides into polymeric β-sheet tapes
A. Aggeli (1997)
10.1038/ncb2370
Fibroblast polarization is a matrix-rigidity-dependent process controlled by focal adhesion mechanosensing
M. Prager-Khoutorsky (2011)
10.1063/1.464397
Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems
T. Darden (1993)
10.1002/anie.201001511
Dissipative self-assembly of a molecular gelator by using a chemical fuel.
J. Boekhoven (2010)
10.1038/ncomms4321
Cell death versus cell survival instructed by supramolecular cohesion of nanostructures
C. Newcomb (2014)
10.1523/JNEUROSCI.0143-08.2008
Self-Assembling Nanofibers Inhibit Glial Scar Formation and Promote Axon Elongation after Spinal Cord Injury
V. Tysseling-Mattiace (2008)
10.1051/JPHYS:01990005106050300
Growth of charged micelles
S. Safran (1990)
Simulation of Nucleic-Acids
L Kale (1995)
10.1016/j.bbrc.2008.07.078
AFM indentation study of breast cancer cells.
Q. S. Li (2008)
10.1038/309030A0
Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule
M. Pierschbacher (1984)
10.1299/kikaia.62.513
Determination of Elastic Moduli of Thin Films Using Inverse Technique. Discussion on Data Sampling in Identation Method.
Hideo Koguchi (1996)
10.1021/ja503882s
Pathway selection in peptide amphiphile assembly.
Peter A Korevaar (2014)
10.1126/science.aac6103
Transient assembly of active materials fueled by a chemical reaction
J. Boekhoven (2015)
10.1063/1.470248
Ion condensation in salt‐free dilute polyelectrolyte solutions
P. González-Mozuelos (1995)
10.1021/MA9615157
Charged micelles in salt-free dilute solutions
C. Huang (1997)
Self - assembly and mineralization of peptide - amphiphile nanofibres
J. D. Hartgerink (2001)
10.1063/1.445869
Comparison of simple potential functions for simulating liquid water
W. Jorgensen (1983)
10.1006/JCPH.1999.6201
NAMD2: Greater Scalability for Parallel Molecular Dynamics
L. Kalé (1999)
Comparison of Simple Potential
W. L. Jorgensen (1996)
10.1063/1.467468
Constant pressure molecular dynamics algorithms
G. Martyna (1994)
10.1038/357057A0
Autocatalytic self-replicating micelles as models for prebiotic structures
P. Bachmann (1992)
Simulation - the Langevin Piston Method
T. Darden (1995)
10.1073/pnas.1206325109
Direct three-dimensional visualization of membrane disruption by amyloid fibrils
Lilia Milanesi (2012)
10.1002/anie.201100202
Electrostatic control of bioactivity.
J. Goldberger (2011)
10.1021/ja110966y
Atomistic molecular dynamics simulations of peptide amphiphile self-assembly into cylindrical nanofibers.
One-Sun Lee (2011)
10.1002/chem.200902415
How to distinguish isodesmic from cooperative supramolecular polymerisation.
M. J. M. Smulders (2010)
10.1063/1.470648
Constant pressure molecular dynamics simulation: The Langevin piston method
S. Feller (1995)
10.1063/1.459310
Model for micelle formation in copolymer/homopolymer blends
Chin-Roa Kao (1990)
Supramolecular materials for regenerative medicine
J. Boekhoven (2014)
10.1038/ncomms1707
Precise hierarchical self-assembly of multicompartment micelles
A. Gröschel (2012)
10.1074/jbc.M109.049809
Fibril Fragmentation Enhances Amyloid Cytotoxicity*♦
W. Xue (2009)
10.1126/SCIENCE.1095353
Reversible Optical Transcription of Supramolecular Chirality into Molecular Chirality
J. J. D. de Jong (2004)
10.1063/1.1672158
Limiting Laws and Counterion Condensation in Polyelectrolyte Solutions II. Self‐Diffusion of the Small Ions
G. Manning (1969)
10.1021/J100347A005
Ionic strength dependence of the length of charged linear micelles
T. Odijk (1989)
10.1038/srep11097
Nano-Biomechanical Study of Spatio-Temporal Cytoskeleton Rearrangements that Determine Subcellular Mechanical Properties and Endothelial Permeability
Xin Wang (2015)
10.1002/anie.201306278
Dynamic display of bioactivity through host-guest chemistry.
J. Boekhoven (2013)
10.1021/JA00153A017
An all-atom empirical energy function for the simulation of nucleic acids
Alexander D. MacKerell (1995)
10.1016/0005-2736(80)90118-2
Serum-induced leakage of liposome contents.
T. Allen (1980)
10.1021/nn304101x
Photodynamic control of bioactivity in a nanofiber matrix.
Shantanu Sur (2012)
10.1038/nchem.861
Biocatalytic induction of supramolecular order
A. Hirst (2010)
10.1063/1.1672157
Limiting Laws and Counterion Condensation in Polyelectrolyte Solutions I. Colligative Properties
G. Manning (1969)
10.1016/0021-9991(83)90014-1
Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations
H. C. Andersen (1983)
10.1002/adma.201304606
25th anniversary article: supramolecular materials for regenerative medicine.
J. Boekhoven (2014)
layers of soft material using the atomic force microscope
S. Sur (2002)
10.1016/B978-0-12-391857-4.00009-4
Methods for cell and particle tracking.
E. Meijering (2012)
10.1126/science.1205962
Functional Supramolecular Polymers
T. Aida (2012)
10.1126/SCIENCE.276.5311.384
Supramolecular Materials: Self-Organized Nanostructures
Stupp (1997)
10.1063/1.1143970
Calibration of atomic‐force microscope tips
J. L. Hutter (1993)
10.1016/0263-7855(96)00018-5
VMD: visual molecular dynamics.
W. Humphrey (1996)
10.1126/science.1182340
Spontaneous and X-ray–Triggered Crystallization at Long Range in Self-Assembling Filament Networks
H. Cui (2010)
10.1103/PHYSREVE.82.031901
Equilibrium polyelectrolyte bundles with different multivalent counterion concentrations.
M. Sayar (2010)
10.1039/C4RA16593D
Alginate-peptide amphiphile core-shell microparticles as a targeted drug delivery system.
J. Boekhoven (2015)
10.1016/S0006-3495(02)75620-8
Determination of elastic moduli of thin layers of soft material using the atomic force microscope.
E. Dimitriadis (2002)
10.1038/nmat2778
A Self-Assembly Pathway to Aligned Monodomain Gels
Shuming Zhang (2010)
10.1021/MA010717M
Polyelectrolytes in multivalent salt solutions: Monomolecular versus multimolecular aggregation
C. Huang (2002)
10.1209/0295-5075/12/8/005
Self-assembly of linear aggregates: the effect of electrostatics on growth
F. MacKintosh (1990)
10.1209/0295-5075/77/16001
Finite-size polyelectrolyte bundles at thermodynamic equilibrium
M. Sayar (2007)
Calibration of atomic force microscope
A. Masalska (2008)
10.1038/nchem.2075
Self-assembling hydrogel scaffolds for photocatalytic hydrogen production.
Adam S. Weingarten (2014)
10.1038/nchem.1617
Catalytic control over supramolecular gel formation.
J. Boekhoven (2013)
10.1088/0953-8984/2/33/001
REVIEW ARTICLE: Statics and dynamics of worm-like surfactant micelles
M. Cates (1990)
10.1038/nprot.2006.244
Analysis of the kinetics of folding of proteins and peptides using circular dichroism
N. Greenfield (2007)
10.1126/SCIENCE.1093783
Selective Differentiation of Neural Progenitor Cells by High-Epitope Density Nanofibers
G. Silva (2004)
10.1103/PHYSREVE.66.011918
Complexes of semiflexible polyelectrolytes and charged spheres as models for salt-modulated nucleosomal structures.
K-K Kunze (2002)
10.1038/nature10720
Pathway complexity in supramolecular polymerization
Peter A Korevaar (2012)
10.1073/pnas.1016546108
Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair
M. Webber (2011)



This paper is referenced by
10.1016/j.biomaterials.2018.10.044
Molecular bionics - engineering biomaterials at the molecular level using biological principles.
Laura Rodríguez-Arco (2019)
10.1016/j.progpolymsci.2020.101310
Design of materials with supramolecular polymers
Tristan D Clemons (2020)
10.1002/chem.201801424
Living Supramolecular Polymerisation of Perylene Diimide Amphiphiles by Seeded Growth under Kinetic Control.
Charles Jarrett-Wilkins (2018)
10.1016/j.progpolymsci.2019.101195
Concepts, fabrication methods and applications of living crystallization-driven self-assembly of block copolymers
S. Ganda (2020)
10.1021/jacs.7b04006
Kinetically Controlled Coassembly of Multichromophoric Peptide Hydrogelators and the Impacts on Energy Transport.
H. A. Ardoña (2017)
10.1021/jacs.7b04986
Supramolecular Assembly of Comb-like Macromolecules Induced by Chemical Reactions that Modulate the Macromolecular Interactions In Situ.
Hongwei Xia (2017)
10.1021/acs.jpcb.6b11602
Electrostatic Control of Polymorphism in Charged Amphiphile Assemblies.
Changrui Gao (2017)
10.1039/c7cs00246g
Dissipative out-of-equilibrium assembly of man-made supramolecular materials.
S. A. P. van Rossum (2017)
10.1039/c8sc01071d
Diffusion across a gel–gel interface – molecular-scale mobility of self-assembled ‘solid-like’ gel nanofibres in multi-component supramolecular organogels† †Electronic supplementary information (ESI) available: AFM, SEM and TEM imaging, fitting of diffusion cell data to yield diffusion coefficients
Jorge Ruíz-Olles (2018)
10.1038/ncomms15895
Non-equilibrium dissipative supramolecular materials with a tunable lifetime
Marta Tena-Solsona (2017)
10.1002/chem.201801213
Hierarchical Self-Assembly Induced by Dilution-Enhanced Hydrophobic Hydration.
Dapeng Liu (2018)
10.1002/mabi.201700311
Macromolecular Coating Enables Tunable Selectivity in a Porous PDMS Matrix.
Benjamin Winkeljann (2018)
10.1016/j.mtadv.2019.100021
Recent advances in supramolecular hydrogels for biomedical applications
J.Y.C. Lim (2019)
10.1021/ACS.MACROMOL.7B01561
Dynamic Light Scattering Investigation of the Kinetics and Fidelity of Supramolecular Copolymerizations in Water
Patrick Ahlers (2017)
10.1007/978-981-13-1744-6_63-1
Self-Assembling Peptides for Vaccine Development and Antibody Production
Zhongyan Wang (2019)
10.1038/s41557-018-0047-2
Amino-acid-encoded biocatalytic self-assembly enables the formation of transient conducting nanostructures
M. Kumar (2018)
10.1039/C6RA21261A
Effects of temperature, pH and counterions on the stability of peptide amphiphile nanofiber structures
Alper D Ozkan (2016)
10.1039/C9TC00165D
Assembly effect on the charge carrier mobility in quaterthiophene-based n/p-materials
Alicia López-Andarias (2019)
10.1021/acs.biomac.7b00057
Supramolecular Hydrogel Formation in a Series of Self-Assembling Lipopeptides with Varying Lipid Chain Length.
Valeria Castelletto (2017)
10.1021/ACS.JPCC.7B06388
Time-and Solvent-Dependent Self-Assembly of Photochromic Crystallites
Mariacristina Gagliardi (2017)
10.1002/adma.201906741
On Supramolecular Self-Assembly: Interview with Samuel Stupp.
Samuel I. Stupp (2020)
10.1021/ACS.MACROMOL.6B02767
50th Anniversary Perspective: Functional Nanoparticles from the Solution Self-Assembly of Block Copolymers
U. Tritschler (2017)
10.1021/acs.nanolett.8b02317
Supramolecular Nanostructure Activates TrkB Receptor Signaling of Neuronal Cells by Mimicking Brain-Derived Neurotrophic Factor.
Alexandra N Edelbrock (2018)
rature , pH and counterions on the stability of peptide amphiphile nano fi ber structures †
Alper D Ozkan (2016)
Nonamphiphilic Assembly of Metal Carbonyl Complexes: Chemical Structure, Kinetics, and Hydrophobic Effect
Dapeng Liu (2018)
10.1002/chem.201806281
Tunable Supramolecular Gel Properties by Varying Thermal History.
Sisir Debnath (2019)
10.1021/jacs.8b10778
Supramolecular Packing and Macroscopic Alignment Controls Actuation Speed in Macroscopic Strings of Molecular Motor Amphiphiles
F. K. Leung (2018)
10.7150/thno.15420
Supramolecular Crafting of Self-Assembling Camptothecin Prodrugs with Enhanced Efficacy against Primary Cancer Cells
H. Su (2016)
10.1039/c9sc00800d
Designing stable, hierarchical peptide fibers from block co-polypeptide sequences† †Electronic supplementary information (ESI) available: Experimental information, peptide analysis, supplementary figures and tomography reconstruction videos. See DOI: 10.1039/c9sc00800d
Mark M J van Rijt (2019)
10.1016/J.POLYMER.2016.12.027
Impact of a subtle structural difference on the kinetic behavior of metastable supramolecular assemblies
Tomoya Fukui (2017)
10.1002/chem.201903066
Emergent Self-assembly Pathways to Multidimensional Hierarchical Assemblies via a Hetero-seeding Approach.
Y. Liu (2019)
10.1039/c9sm00383e
The pathway and kinetics of hierarchical assembly of ionic oligomers into a lyotropic columnar phase.
Weiheng Huang (2019)
See more
Semantic Scholar Logo Some data provided by SemanticScholar