Online citations, reference lists, and bibliographies.
← Back to Search

Dopant Profiling And Surface Analysis Of Silicon Nanowires Using Capacitance-voltage Measurements.

E. Garnett, Y. Tseng, D. R. Khanal, J. Wu, J. Bokor, P. Yang
Published 2009 · Materials Science, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
Silicon nanowires are expected to have applications in transistors, sensors, resonators, solar cells and thermoelectric systems. Understanding the surface properties and dopant distribution will be critical for the fabrication of high-performance devices based on nanowires. At present, determination of the dopant concentration depends on a combination of experimental measurements of the mobility and threshold voltage in a nanowire field-effect transistor, a calculated value for the capacitance, and two assumptions--that the dopant distribution is uniform and that the surface (interface) charge density is known. These assumptions can be tested in planar devices with the capacitance-voltage technique. This technique has also been used to determine the mobility of nanowires, but it has not been used to measure surface properties and dopant distributions, despite their influence on the electronic properties of nanowires. Here, we measure the surface (interface) state density and the radial dopant profile of individual silicon nanowire field-effect transistors with the capacitance-voltage technique.
This paper references
10.1002/ADMA.200401959
Si Nanowire Bridges in Microtrenches: Integration of Growth into Device Fabrication
R. He (2005)
10.1063/1.1361065
High-κ gate dielectrics: Current status and materials properties considerations
G. Wilk (2001)
10.1063/1.1901835
Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells
B. M. Kayes (2005)
Silicon nanowire p–n junction solar cells
E C Garnett (2008)
J. R. in MOS Physics and Technology
E H Nicollian (1982)
10.1007/S00339-006-3746-2
Influence of the Si/SiO2 interface on the charge carrier density of Si nanowires
V. Schmidt (2006)
10.1038/nnano.2006.53
Giant piezoresistance effect in silicon nanowires
R. He (2006)
10.1021/NL060166J
Silicon Vertically Integrated Nanowire Field Effect Transistors
J. Goldberger (2006)
10.1002/ADMA.200700288
Growth and Electrical Characteristics of Platinum‐Nanoparticle‐Catalyzed Silicon Nanowires
E. Garnett (2007)
10.1063/1.2047555
Structures and energetics of hydrogen-terminated silicon nanowire surfaces.
R. Zhang (2005)
10.1021/ja8032907
Silicon nanowire radial p-n junction solar cells.
E. Garnett (2008)
10.1021/nl070378w
Measuring the capacitance of individual semiconductor nanowires for carrier mobility assessment.
R. Tu (2007)
10.1021/JP0009305
Doping and Electrical Transport in Silicon Nanowires
Y. Cui (2000)
10.1021/NL071330L
Gate coupling and charge distribution in nanowire field effect transistors.
D. R. Khanal (2007)
10.1147/RD.125.0399
On the measurement of impurity atom distributions in silicon by the differential capacitance technique
D. Kennedy (1968)
10.1016/0531-5565(92)90018-U
Acknowledgements
(1992)
10.1038/NPHYS412
Measurement of the quantum capacitance of interacting electrons in carbon nanotubes
S. Ilani (2006)
10.1063/1.2177383
Influence of single and double deposition temperatures on the interface quality of atomic layer deposited Al2O3 dielectric thin films on silicon
S. Dueñas (2006)
10.1063/1.2949080
InAs nanowire metal-oxide-semiconductor capacitors
S. Roddaro (2008)
10.1021/nl072646w
Measurement of carrier mobility in silicon nanowires.
O. Gunawan (2008)
10.1016/0038-1101(62)90111-9
An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes
L. M. Terman (1962)
10.1063/1.1753975
VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH
R. Wagner (1964)
10.1147/RD.132.0212
On the measurement of impurity atom distributions by the differential capacitance technique
D. Kennedy (1969)
10.1002/chin.200814011
Enhanced Thermoelectric Performance of Rough Silicon Nanowires.
Allon I Hochbaum (2008)
10.1021/NL0706695
Very High Frequency Silicon Nanowire Electromechanical Resonators
X. Feng (2007)
10.1016/j.microrel.2004.11.039
Admittance spectroscopy of traps at the interfaces of (100)Si with Al2O3, ZrO2, and HfO2
L. Truong (2005)
10.1038/nature06381
Enhanced thermoelectric performance of rough silicon nanowires
A. Hochbaum (2008)
10.1126/SCIENCE.1062711
Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species
Yunlong Cui (2001)
10.1021/JA056785W
Electrical characteristics and chemical stability of non-oxidized, methyl-terminated silicon nanowires.
H. Haick (2006)
Influence of the Si/SiO 2 interface on the charge carrier density of Si nanowires
M. Planck (2007)
10.1146/ANNUREV.MATSCI.34.040203.112300
SEMICONDUCTOR NANOWIRES AND NANOTUBES
M. Law (2004)
10.1021/NL035162I
Controlled Growth and Structures of Molecular-Scale Silicon Nanowires
Y. Wu (2004)



This paper is referenced by
10.1039/c6nr05014j
Uncovering the density of nanowire surface trap states hidden in the transient photoconductance.
Qiang Xu (2016)
10.1063/1.3519980
Impact of surfaces on the optical properties of GaAs nanowires
O. Demichel (2010)
Effects of Charge Transport and Heterogeneous Charge Transfer on the Operation of Inorganic Semiconductor Light-Harvesting Systems.
Michelle Chitambar (2012)
10.1063/1.4996987
Self-diffusion in single crystalline silicon nanowires
T. Südkamp (2018)
Fabrication and Characterization of Nanowires and Quantum Dots for Advanced Solar Cell Architectures
B. Sadeghimakki (2012)
10.1063/1.4823517
Surface depletion effects in semiconducting nanowires having a non-uniform radial doping profile
Y. Calahorra (2013)
10.1016/J.SUSC.2012.08.002
Surface science of free standing semiconductor nanowires
A. Mikkelsen (2013)
10.1021/CM300570N
Semiconductor Nanowire Fabrication by Bottom-Up and Top-Down Paradigms
R. Hobbs (2012)
10.1038/ncomms2509
GaAs nanopillar-array solar cells employing in situ surface passivation
G. Mariani (2013)
Etude de de l'intégration 3D et des propriétés physiques de nanofils de silicium obtenus par croissance. Réalisation de capacités ultra-denses
P. Morel (2011)
10.1038/s41565-017-0041-7
Photoelectrochemical modulation of neuronal activity with free-standing coaxial silicon nanowires
R. Parameswaran (2018)
10.1063/1.4746762
Ultra high density three dimensional capacitors based on Si nanowires array grown on a metal layer
P. Morel (2012)
Device Fabrication and Characterization
Hultin (2018)
10.1143/APEX.5.055201
Vertically Aligned InP Nanowires Grown via the Self-Assisted Vapor–Liquid–Solid Mode
Guoqiang Zhang (2012)
10.1371/journal.pone.0045379
BioFET-SIM Web Interface: Implementation and Two Applications
M. Hediger (2012)
10.1016/J.PHYSB.2011.03.046
The effect of surface roughness on lattice thermal conductivity of silicon nanowires
Z. Wang (2011)
10.1109/3M-NANO.2012.6472995
Characterizing leakage current in silicon nanowire-based field-effect transistors by applying pseudo-random sequences
T. Roinila (2012)
10.1109/SISPAD.2010.5604493
Giant piezoresistance effect in p-type silicon
T. T. T. Nghiêm (2010)
10.1016/J.TSF.2011.01.280
Vapor-solid-solid growth of crystalline silicon nanowires using anodic aluminum oxide template
C. Kuo (2011)
10.1088/0256-307X/28/3/035202
Self-Assembled Wire Arrays and ITO Contacts for Silicon Nanowire Solar Cell Applications
Y. Cheng (2011)
10.1109/TNANO.2013.2248164
Interface State Density of Single Vertical Nanowire MOS Capacitors
P. Mensch (2013)
10.25777/59m8-r065
Carbon and Boron Nitride Nanotube Fabricated Supercapacitors
Derek Demuth (2016)
10.1201/B18066-8
Photoelectrochemistry with Nanostructured Semiconductors
W. Wen (2015)
10.1021/acsnano.7b04752
Damage-Free Smooth-Sidewall InGaAs Nanopillar Array by Metal-Assisted Chemical Etching.
Ling-yu Kong (2017)
10.1088/0957-4484/22/7/075706
Growth of doped silicon nanowires by pulsed laser deposition and their analysis by electron beam induced current imaging.
B. Eisenhawer (2011)
10.1039/C1EE02518J
Analysis of the operation of thin nanowire photoelectrodes for solar energy conversion
Justin M. Foley (2012)
Propriétés électroniques de nanofils de silicium obtenus par croissance catalysée
O. Demichel (2010)
10.1116/1.3548876
Silicon nanostructure solar cells with excellent photon harvesting
C. Chen (2011)
10.1088/0957-4484/22/31/315710
Efficient photogeneration of charge carriers in silicon nanowires with a radial doping gradient.
D. H. K. Murthy (2011)
10.1007/978-1-4614-8169-0_4
Applications of Ordered Si Nanowire Array to Solar Energy Harvesting and NEMS
Yuerui Lu (2013)
Novel Processing and Electrical Characterization of Nanowires
Kristian Storm (2013)
10.1021/nl102867a
High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography.
Yuerui Lu (2010)
See more
Semantic Scholar Logo Some data provided by SemanticScholar