Online citations, reference lists, and bibliographies.
← Back to Search

Nickel-catalyzed Intermolecular Oxidative Heck Arylation Driven By Transfer Hydrogenation

Honggui Lv, Huiying Kang, Biying Zhou, Xiaosong Xue, Keary M. Engle, Dongbing Zhao

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
Abstract The conventional oxidative Heck reaction between aryl boronic acids and alkenes typically involved the PdII/Pd0/PdII catalytic cycle incorporating an external oxidant and often suffered C=C bond isomerization for internal alkyl-substituted alkenes via chain-walking. Herein, we demonstrate that the regioselectivity (γ-selectivity vs. δ-selectivity) and pathway selectivity (hydroarylation vs. oxidative Heck coupling) of a directed Ni-catalyzed alkene arylation can be controlled by judicious tuning of the coordination environment around the nickel catalyst via optimization of an appropriate phosphine ligand and directing group. In this way, the Ni(0)-catalyzed oxidative Heck arylation that relies on transfer hydrogenation of an acceptor olefin is developed with excellent E/Z selectivity and regioselectivity. Mechanistic investigations suggest that the addition of the acceptor is crucial for lowering the energy for carbometalation and for enabling catalytic turnover.