Online citations, reference lists, and bibliographies.
← Back to Search

A Perspective On Nanophase Materials For Orthopedic Implant Applications

G. Balasundaram, T. Webster
Published 2006 · Materials Science

Cite This
Download PDF
Analyze on Scholarcy
Share
In the past, synthetic conventional materials have not served as satisfactory implants. As an example, the current average lifetime of an orthopedic implant (such as hip, knee, ankle, etc.) is only 10 to 15 years. Clearly, such conventional materials (or those materials with constituent dimensions greater than 1 micron) have not invoked suitable cellular responses to regenerate enough bone to allow these devices to be successful for long periods of time. In contrast, due to their ability to mimic the dimensions of constituent components of natural bone (like proteins and hydroxyapatite), nanophase materials may be an exciting successful alternative orthopedic implant material. Nanophase materials are defined as materials with constituent dimensions (and/or associated surface features) less than 100 nm in at least one direction. This review article discusses recent studies that have been conducted to determine the efficacy of nanophase materials as orthopedic implants. In doing so, compared with conventional orthopedic implant materials, it is suggested that nanophase materials can be synthesized to possess similar nanometer dimensions as components of natural bone to promote new bone formation; a criterion critical to orthopedic implant success.
This paper references
10.1089/TEN.2005.11.226
Human endothelial cell interaction with biomimetic surfactant polymers containing Peptide ligands from the heparin binding domain of fibronectin.
S. Sagnella (2005)
Biomed. Mater. Res
S Takebe (2000)
Biomed. Mater. Res. A
T J Thapa (1374)
10.1109/TNB.2004.837898
Tutorial on the biology of nanotopography
A. Curtis (2004)
10.1016/J.BIOMATERIALS.2006.02.044
Combinatorial screen of the effect of surface energy on fibronectin-mediated osteoblast adhesion, spreading and proliferation.
S. B. Kennedy (2006)
Biomed. Mater. Res
D Savarino (1999)
10.1002/JBM.A.20011
Osteoblast function on nanophase alumina materials: Influence of chemistry, phase, and topography.
R. L. Price (2003)
10.1097/01.blo.0000148783.20469.4c
Wear, Debris, and Biologic Activity of Cross-linked Polyethylene in the Knee: Benefits and Potential Concerns
J. Fisher (2004)
10.1002/1097-4636(200011)52:2<261::AID-JBM4>3.0.CO;2-2
Adhesion and proliferation of corneal epithelial cells on self-assembled monolayers.
M. Franco (2000)
10.1023/B:ABME.0000017544.36001.8e
Polymeric Scaffolds for Bone Tissue Engineering
X. Liu (2004)
J. Cell. Mol. Med
D Logeart-Avramoglou (2005)
10.1557/JMR.2001.0457
Titanium oxide nanotube arrays prepared by anodic oxidation
D. Gong (2001)
10.1021/bi049174+
The synergy peptide PHSRN and the adhesion peptide RGD mediate cell adhesion through a common mechanism.
Y. Feng (2004)
J. Biomed. Mater. Res
M Anselme (2002)
10.1016/S0142-9612(00)00075-2
Enhanced functions of osteoblasts on nanophase ceramics.
T. Webster (2000)
10.1111/j.1582-4934.2005.tb00338.x
Engineering bone: challenges and obstacles
D. Logeart-Avramoglou (2005)
J. Biomed. Mater. Res. A
L Price (1284)
10.1016/S0142-9612(99)00160-X
Understanding and controlling the bone-implant interface.
D. Puleo (1999)
10.1021/LA0515221
Manipulation of micrometer-scale adhesion by tuning nanometer-scale surface features.
N. Kozlova (2006)
10.1007/s000180300008
Structure and function of RGD peptides involved in bone biology
P. Schaffner (2003)
Biomed. Mater. Res. A
J Webster (2005)
Philos. Trans. R. Soc. London, Ser. A: Math. Phys. Eng. Sci. J. Currey, Nature
K A Hing (2001)
10.1136/bmj.1.4959.155-a
Biochemistry
F. G. Young (1955)
Key Eng. Mater
N Tamura (2004)
J. Orthop. Res
A El-Ghannam (1999)
10.1002/JBM.A.30073
Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts.
R. L. Price (2004)
10.1016/J.BIOMATERIALS.2003.08.064
Decreased fibroblast cell density on chemically degraded poly-lactic-co-glycolic acid, polyurethane, and polycaprolactone.
R. J. Vance (2004)
10.1016/S0142-9612(02)00379-4
Response of rat osteoblast-like cells to microstructured model surfaces in vitro.
H. Liao (2003)
Biomed. Mater. Res. A
M Woo (2003)
Key Eng. Mater
S Fujibayashi (2004)
Biomed. Mater. Res
L D Que (2000)
10.1016/J.BIOMATERIALS.2003.12.002
Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo.
T. Webster (2004)
10.1016/S1359-6462(01)00873-9
Nanoceramic surface roughness enhances osteoblast and osteoclast functions for improved orthopaedic/dental implant efficacy
T. Webster (2001)
J. Biomed. Mater. Res
J Webster (2000)
Biomaterials J. Mater. Sci.: Mater. Med
D A Puleo (1999)
10.1016/S1369-7021(04)00081-1
NANOPARTICLES: HEALTH IMPACTS?
D. Warheit (2004)
10.1016/S0142-9612(02)00129-1
Micropatterned surfaces modified with select peptides promote exclusive interactions with osteoblasts.
M. Hasenbein (2002)
10.1016/S0142-9612(98)00140-9
Polyethylene particles of a 'critical size' are necessary for the induction of cytokines by macrophages in vitro.
T. Green (1998)
10.1002/(SICI)1097-4636(19991215)47:4<543::AID-JBM11>3.0.CO;2-G
Effects of metal ions on white blood cells of patients with failed total joint arthroplasties.
L. Savarino (1999)
10.1098/rsta.2004.1466
Bone repair in the twenty–first century: biology, chemistry or engineering?
K. Hing (2004)
10.1016/J.BIOMATERIALS.2004.07.055
Controlled release of plasmid DNA from photo-cross-linked pluronic hydrogels.
Ki Woo Chun (2005)
J. Mater. Res
D Gong (2001)
10.1016/J.BIOMATERIALS.2004.07.011
Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications.
Megan A Pattison (2005)
Langmuir
N Kozlova (1135)
10.4028/www.scientific.net/KEM.254-256.919
Effects of Micro/Nano Particle Size on Cell Function and Morphology
Kazuchika Tamura (2003)
10.1016/J.BIOMATERIALS.2004.02.037
The influence of surface topography of ceramic abutments on the attachment and proliferation of human oral fibroblasts.
K. Mustafa (2005)
10.4028/www.scientific.net/KEM.254-256.953
Osteoinduction of Bioactive Titanium Metal
S. Fujibayashi (2003)
10.1002/(SICI)1097-4636(20000605)50:3<428::AID-JBM18>3.0.CO;2-H
Modulating fibroblast adhesion, spreading, and proliferation using self-assembled monolayer films of alkylthiolates on gold.
K. B. McClary (2000)
10.1089/10763270152044152
Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin.
T. Webster (2001)
10.1002/(SICI)1097-4636(19990905)46:3<368::AID-JBM9>3.0.CO;2-8
Development of RGD peptides grafted onto silica surfaces: XPS characterization and human endothelial cell interactions.
M. Porté‐Durrieu (1999)
10.1016/J.BIOMATERIALS.2005.12.008
Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD.
G. Balasundaram (2006)
J. Biomed. Mater. Res
K B Mcclary (2000)
Biomed. Mater. Res
M C Porte-Durrieu (2003)
J. Mater. Sci.: Mater. Med
M C Durrieu (2004)
10.1109/TNB.2004.824276
Cells react to nanoscale order and symmetry in their surroundings
A. Curtis (2004)
10.1016/J.ACTBIO.2005.09.007
Mineralisation of chitosan scaffolds with nano-apatite formation by double diffusion technique.
I. Manjubala (2006)
10.1088/1742-6596/13/1/074
A metrology solution for the orthopaedic industry
P. Bills (2005)
10.1016/J.BIOMATERIALS.2005.05.080
Helical rosette nanotubes: a biomimetic coating for orthopedics?
A. Chun (2005)
10.1002/(SICI)1097-4636(20000305)49:3<362::AID-JBM9>3.0.CO;2-S
Relationships among cell attachment, spreading, cytoskeletal organization, and migration rate for anchorage-dependent cells on model surfaces.
K. Webb (2000)
10.1016/S0142-9612(99)00020-4
Osteoblast adhesion on nanophase ceramics.
T. Webster (1999)
Biomed. Mater. Res
M Dettin (2002)
Chemistry J. Mater. Chem
(2006)
Biomed. Mater. Res
D Boyan (2001)
Tissue Eng
A Kay (2002)
10.1016/S0142-9612(01)00424-0
In vitro reaction of endothelial cells to polymer demixed nanotopography.
M. Dalby (2002)
10.1038/207231A0
Advances in Chemical Engineering
J. Richardson (1965)
Clin. Orthop. Relat. Res
J Fisher (2004)
10.1023/B:JMSM.0000032818.09569.D9
Grafting RGD containing peptides onto hydroxyapatite to promote osteoblastic cells adhesion
Marie-Christine Durrieu (2004)
10.1002/JBM.A.10098
Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment.
K. Woo (2003)
Cell. Mol. Life Sci
P Schaffner (2003)
10.1021/JA042898O
Interpretation of protein adsorption: surface-induced conformational changes.
P. Roach (2005)
10.1146/ANNUREV.MATSCI.31.1.357
Mechanisms Involved in Osteoblast Response to Implant Surface Morphology
B. Boyan (2001)
10.1002/1439-7633(20000818)1:2<107::AID-CBIC107>3.0.CO;2-4
Surface Coating with Cyclic RGD Peptides Stimulates Osteoblast Adhesion and Proliferation as well as Bone Formation
M. Kantlehner (2000)
10.1007/S10856-006-8475-8
Statistical demonstration of the relative effect of surface chemistry and roughness on human osteoblast short-term adhesion
K. Anselme (2006)
Nanotechnology J.Phys.: Conf. Ser
H Palin (1828)
Tissue Eng
J Wilson (2005)
10.1002/(SICI)1097-4636(20000605)50:3<322::AID-JBM5>3.0.CO;2-U
Third-body wear of cobalt-chromium-molybdenum implant alloys initiated by bone and poly(methyl methacrylate) particles.
L. Que (2000)
10.1002/1097-4636(20000905)51:3<475::AID-JBM23>3.0.CO;2-9
Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics.
T. Webster (2000)
10.1002/JOR.1100170307
Effect of serum proteins on osteoblast adhesion to surface‐modified bioactive glass and hydroxyapatite
A. Elghannam (1999)
10.1126/science.1106587
Exploring and Engineering the Cell Surface Interface
M. Stevens (2005)
10.1179/174328408x369933
Biomaterials
R. Misra (2008)
Acta Biomater
S Manjubala (2006)
Biomed. Mater. Res
V Webb (2000)
Biomaterials Colloids Surf., B
J Webster (2004)
10.1111/J.1600-0757.2006.00175.X
Advances in dental implant materials and tissue regeneration.
J. Ellingsen (2006)
10.5860/choice.40-3433
An introduction to tissue-biomaterial interactions
S. S. Davis (2002)
Tissue Eng
S Sagnella (2005)
ChemBioChem
P Kantlehner (2000)
10.1002/JBM.A.30358
Increased osteoblast function on PLGA composites containing nanophase titania.
T. Webster (2005)
10.1016/S0142-9612(03)00343-0
RGD modified polymers: biomaterials for stimulated cell adhesion and beyond.
U. Hersel (2003)
10.1016/J.BIOMATERIALS.2003.08.043
High-throughput investigation of osteoblast response to polymer crystallinity: influence of nanometer-scale roughness on proliferation.
N. Washburn (2004)
10.1016/J.BIOMATERIALS.2003.11.037
Cyclo-(DfKRG) peptide grafting onto Ti-6Al-4V: physical characterization and interest towards human osteoprogenitor cells adhesion.
M. Porté‐Durrieu (2004)
10.1002/JBM.10066
Novel osteoblast-adhesive peptides for dental/orthopedic biomaterials.
M. Dettin (2002)
10.1243/0954411021536432
Titanium in Medicine
K. Tanner (2002)
Annu. Rev. Mater. Res
D Boyan (2001)
IEEE Trans. Nanobiosci. IEEE Trans. Nanobiosci
A Curtis (2004)
10.1002/JBM.A.20037
Polymers with nano-dimensional surface features enhance bladder smooth muscle cell adhesion.
A. Thapa (2003)
10.1016/S0142-9612(02)00427-1
Fibroblast reaction to island topography: changes in cytoskeleton and morphology with time.
M. Dalby (2003)
J. Am. Chem. Soc
D Roach (2005)
10.1002/1097-4636(20010605)55:3<350::AID-JBM1023>3.0.CO;2-M
Both cyclooxygenase-1 and cyclooxygenase-2 mediate osteoblast response to titanium surface roughness.
B. Boyan (2001)
10.1089/TEN.2005.11.1
Mediation of biomaterial-cell interactions by adsorbed proteins: a review.
C. J. Wilson (2005)
10.1016/S0142-9612(00)00285-4
Enhanced osteoclast-like cell functions on nanophase ceramics.
T. Webster (2001)
10.1021/LA0017781
Effect of Surface Hydrophobicity on Adsorption and Relaxation Kinetics of Albumin and Fibrinogen: Single-Species and Competitive Behavior
Christian F. Wertz and (2001)
10.1038/414773a
Bone indentation recovery time correlates with bond reforming time
J. J. Thompson (2001)
10.1038/414699a
Biomaterials: Sacrificial bonds heal bone
J. Currey (2001)
Biomed. Mater. Res. J. Mater. Chem
R L Price (2004)
Scr. Mater
J Webster (1639)
Mater. Sci. Eng. Ann. Biomed. Eng. Biomaterials
K Ponsonnet (1327)
J. Biomed. Mater. Res
P F Franco (2000)
10.1088/0957-4484/15/1/009
Nano-biotechnology: carbon nanofibres as improved neural and orthopaedic implants
T. Webster (2004)
10.1016/J.COLSURFB.2006.02.016
Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation?
K. Cai (2006)
10.1016/S0928-4931(03)00033-X
Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour
L. Ponsonnet (2003)
10.1002/JBM.10101
Effect of grooved titanium substratum on human osteoblastic cell growth.
K. Anselme (2002)
10.1002/1097-4636(20000905)51:3<398::AID-JBM14>3.0.CO;2-#
Anodic oxidation and hydrothermal treatment of titanium results in a surface that causes increased attachment and altered cytoskeletal morphology of rat bone marrow stromal cells in vitro.
J. Takebe (2000)
10.1089/10763270260424114
Nanostructured polymer/nanophase ceramic composites enhance osteoblast and chondrocyte adhesion.
Sarina Kay (2002)
10.1088/0957-4484/16/9/069
Mimicking the nanofeatures of bone increases bone-forming cell adhesion and proliferation
Erica Palin (2005)
10.1016/S0142-9612(03)00471-X
Endothelial and vascular smooth muscle cell function on poly(lactic-co-glycolic acid) with nano-structured surface features.
D. C. Miller (2004)
Langmuir
C F Wertz (2001)
Tissue Eng
J Webster (2001)
10.1007/s100190100124
Nanotechnology
J. Gilman (2001)



This paper is referenced by
10.1063/1.2876421
Self-assembled monolayer of alkanephosphoric acid on nanotextured Ti.
S. Clair (2008)
10.1155/2015/920893
Comparison of fibroblast and osteoblast response to cultivation on titanium implants with different grain sizes
V. Babuska (2015)
10.1016/j.actbio.2011.09.031
Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium.
H. Hu (2012)
10.1557/PROC-1181-DD08-01
Fabrication and Surface Modification of Porous Nano-Structured NiTi Orthopedic Scaffolds for Bone Implants
Shuilin Wu (2009)
10.1557/JMR.2009.0221
Processing and microstructure characterization of a novel porous hierarchical TiO 2 structure
G. A. Crawford (2009)
MOLECULAR LEVEL ANALYSIS OF ADHESION MECHANISM OF PROTEINS ON CALCIUM BINDING SITES OF HA USING QUANTUM MECHANICAL CALCULATIONS
(2011)
10.1243/09544119JEIM817
Investigations into the Molecular-Level Adhesion Characteristics of Hydroxyapatite-Coated and Anodized Titanium Surfaces Using the Molecular Orbital Approach
K. K. Saju (2011)
10.1109/BMEI.2010.5639591
A novel 3-dimensional cell culture system for embryoid bodies' formation
Xiang-Hui Zou (2010)
10.1533/9780857090768.2.365
Modifying biomaterial surfaces to optimise interactions with bone
R. Sammons (2011)
10.1016/J.APSUSC.2012.08.011
Biocompatibility of the micro-patterned NiTi surface produced by femtosecond laser
Chunyong Liang (2012)
10.1179/1751584X12Y.0000000005
Biological effects of wear particles generated in total joint replacements: trends and future prospects
S. Suner (2012)
10.1016/j.actbio.2008.04.004
Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes.
S. Bauer (2008)
10.1128/AEM.03436-12
Effect of Micro- and Nanoscale Topography on the Adhesion of Bacterial Cells to Solid Surfaces
L. C. Hsu (2013)
10.1002/9781118523025.CH2
Biological and Medical Significance of Nanodimensional and Nanocrystalline Calcium Orthophosphates
S. Dorozhkin (2012)
Biocompatibility of Implantable Materials Focused on Titanium Dental Implants
Amin Moztarzadeh (2017)
10.1002/wnan.1201
Nanomaterials and synergistic low-intensity direct current (LIDC) stimulation technology for orthopedic implantable medical devices.
Rohan A. Shirwaiker (2013)
Mestrado Integrado em Engenharia Química
Tese de Mestrado (2010)
10.2196/13237
The Effects of Titanium Implant Surface Topography on Osseointegration: Literature Review
P. Kumar (2019)
10.1201/B17444-10
Cell Response to Nanoscale Features and Its Implications in Tissue Regeneration: An Orthopedic Perspective
B. Ercan (2014)
Fabrication of bioactive osteogenic controlled-release systems, cellular platforms, and cellular capsules using layer -by -layer nanoassembly
S. Stewart-Clark (2008)
10.1021/bm200027z
Highly extensible, tough, and elastomeric nanocomposite hydrogels from poly(ethylene glycol) and hydroxyapatite nanoparticles.
A. Gaharwar (2011)
10.1109/ICMA.2010.45
Selective Laser Melting of Magnesium for Future Applications in Medicine
M.M. Savalani (2010)
10.1016/J.CERAMINT.2014.11.155
Sintering in a graphite powder bed of alumina-toughened zirconia/carbon nanotube composites: a novel way to delay hydrothermal degradation
M. Estili (2015)
MECHANISM OF PROTEIN ADHESION TO IMPLANT SURFACES
(2011)
10.1016/J.MSER.2010.06.013
Surface nano-functionalization of biomaterials
X. Liu (2010)
10.1007/978-3-642-36801-1_243-1
Nanotechnology in Sports Medicine
C. Bayram (2014)
10.1007/978-3-319-15461-9_2
Green Techniques for Biomedical Metallic Materials with Nanotechnology
K. Guo (2015)
10.1002/jbm.a.31771
Helical domain collagen substrates mineralization in simulated body fluid.
G. Falini (2008)
The Effect of Micro- and Nanoscale Topography on the Adhesion of Bacterial
Lillian Hsu (2013)
10.1201/B16135-13
Nanopatterned Implants Loaded With Drugs
Alexey Iordanskii (2013)
10.1002/PAT.1845
Bone‐guided regeneration: from inert biomaterials to bioactive polymer (nano)composites
D. Barone (2011)
Characterization of Hydrothermally Annealed Low Temperature Bioactive Thin Film Coatings of Hydroxyapatite on TiAl6V4 Implant material
K. K. Saju (2009)
See more
Semantic Scholar Logo Some data provided by SemanticScholar