Online citations, reference lists, and bibliographies.

Templated Self-assembly In Three Dimensions Using Magnetic Levitation

Filip Ilievski, Katherine A. Mirica, Audrey K. Ellerbee, G. Whitesides
Published 2011 · Chemistry

Cite This
Download PDF
Analyze on Scholarcy
Share
Although self-assembly (SA) in two dimensions (2D) is highly developed (especially using surfaces as a templates), SA in three dimensions (3D) has been more difficult. This paper describes a strategy for SA in 3D of diamagnetic plastic objects (mm- to cm-sized in this work, but in principle in sizes from ∼10 μm to m) supported in a paramagnetic fluid by a non-uniform magnetic field. The magnetic field and its gradient levitate the objects, template their self-assembly, and influence the shape of the assembled cluster. The structure of the 3D assembling objects can be further directed using hard mechanical templates—either the walls of the container or co-levitating components—which coincide spatially with the soft template of the magnetic field gradient. Mechanical agitation anneals the levitating clusters; the addition of photocurable adhesive, followed by UV illumination, can permanently fuse components together.
This paper references
This journal is ª The Royal Society of Chemistry
Soft Matter (2011)
疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A
宁北芳 (2005)
Magnetohydrostatic Methods of Mineral Separation
Magnetohydrodynamic Andres (1976)
United States Patent : 6623579 - Methods and apparatus for fluidic self assembly ( 2003 )
F. Lowe
10.1103/PHYSREVE.67.021402
Field-induced structures in miscible ferrofluid suspensions with and without latex spheres.
M. F. Islam (2003)
10.1016/S0196-8904(01)00115-7
Separation of feeble magnetic particles with magneto-Archimedes levitation
Yasuhiro Ikezoe (2002)
J. Am. Chem. Soc
K A Mirica (2008)
J. Agric. Food Chem
K A Mirica (2010)
Downloaded by Harvard University on 11 October 2011 Published on 12 August
(2011)
Adv. Mater
K A Mirica
Floating gold in cryogenic oxygen
A. Catherall (2003)
Theory and Experiment
R. Johnsen (2010)
10.1073/pnas.082065899
Beyond molecules: Self-assembly of mesoscopic and macroscopic components
G. Whitesides (2002)
10.1007/s100190100124
Nanotechnology
J. Gilman (2001)
J. Appl. Phys. Appl. Phys. Lett
E Feinstein (2005)
10.1038/19740
Self-assembly of nanoscale cuboctahedra by coordination chemistry
B. Olenyuk (1999)
New J. Phys
A Catherall (2005)
10.1016/j.otohns.2009.05.016
Nature
R. Rosenfeld (2009)
10.1063/1.2179196
Three-dimensional self-assembly of structures using the pressure due to a ferrofluid in a magnetic field gradient
E. Feinstein (2006)
Langmuir
Holgado (1999)
10.1021/ja900920s
Measuring densities of solids and liquids using magnetic levitation: fundamentals.
Katherine A. Mirica (2009)
10.1038/386143a0
Photonic crystals: putting a new twist on light
J. D. Joannopoulos (1997)
10.1126/science.240.4848.62
Molecular-Level Control over Surface Order in Self-Assembled Monolayer Films of Thiols on Gold
C. Bain (1988)
10.1088/0957-4484/14/10/201
Nanostructure fabrication using block copolymers
I. W. Hamley (2003)
Chem. Lett
S Kimura (2000)
10.1002/ANIE.200200562
Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures.
H. Cölfen (2003)
10.1112/plms/s3-8.4.609
The Packing of Equal Spheres
C. Rogers (1958)
10.1126/SCIENCE.1070821
Self-Assembly at All Scales
G. Whitesides (2002)
10.1007/978-94-009-2875-6
Theory and Experiment
D. Batens (1988)
Annu. Rev. Phys. Chem
S Bates (1990)
10.1021/JA0210446
Using hierarchical self-assembly to form three-dimensional lattices of spheres.
H. Wu (2002)
10.1146/annurev.pc.41.100190.002521
Block copolymer thermodynamics: theory and experiment.
Frank S. Bates (1990)
10.1021/ja8074727
Using magnetic levitation to distinguish atomic-level differences in chemical composition of polymers, and to monitor chemical reactions on solid supports.
Katherine A. Mirica (2008)
10.1088/1367-2630/7/1/118
Cryogenically enhanced magneto-Archimedes levitation
A. T. Catherall (2005)
Liquid crystalline functional assemblies
T. Kato (2003)
10.1038/188908a0
Packing of Spheres: Packing of Equal Spheres
G. Scott (1960)
10.1007/978-3-540-77867-7
Liquid crystalline functional assemblies and their supramolecular structures
加藤 隆史 (2008)
10.1038/42999
Erratum: Photonic crystals: putting a new twist on light
J. D. Joannopoulos (1997)
Angew. Chem., Int. Ed. Discrete Comput. Geom. Nature
H C€ Olfen (1960)
Langmuir
T Kimura (2005)
10.1093/acprof:oso/9780199213252.001.0001
Macromolecular Crystallization and Crystal Perfection
Naomi E Chayen (2010)
10.1038/237320a0
Bubble Raft Model for an Amorphous Alloy
A. Simpson (1972)
10.1021/LA047517Z
Micropatterning of cells using modulated magnetic fields.
T. Kimura (2005)
Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top
F Islam (2003)
10.1016/J.PHYSB.2004.01.063
Magneto-Archimedes separation and its application to the separation of biological materials
Noriyuki Hirota (2004)
10.1080/01405110050130892
FUNDAMENTALS
(2000)
Phys. B
N Hirota (2004)
10.1246/CL.2000.1294
Separation of Solid Polymers by Magneto-Archimedes Levitation
T. Kimura (2000)
Magnetohydrodynamic & Magnetohydrostatic Methods of Mineral Separation
U. Andres (1976)
J. Am. Chem. Soc. Anal. Chem
K A Mirica (2007)
J. Am. Chem. Soc
V R Wu (2002)
10.1109/ROBOT.1996.506193
Cooperative 2-DOF robots for precision assembly
A. Quaid (1996)
10.1126/science.1181263
The Free-Energy Landscape of Clusters of Attractive Hard Spheres
G. Meng (2010)
10.1021/AC070500B
Density-based diamagnetic separation: devices for detecting binding events and for collecting unlabeled diamagnetic particles in paramagnetic solutions.
A. Winkleman (2007)
10.1016/0378-4371(94)00145-J
CONDENSATION AND ORDERING OF COLLOIDAL SPHERES DISPERSED IN A FERROFLUID
A. Skjeltorp (1991)
10.1007/s00454-002-2791-7
Densest Packing of Equal Spheres in Hyperbolic Space
L. Bowen (2003)
Proc. IEEE Int. Conf. Rob. Autom
A Quaid (1996)
10.1038/35104529
On-chip natural assembly of silicon photonic bandgap crystals
Y. Vlasov (2001)
10.1063/1.1947371
Self-organization of nonmagnetic spheres by magnetic field
T. Takayama (2005)
10.1021/jf100377n
Magnetic levitation in the analysis of foods and water.
Katherine A. Mirica (2010)
United States Patent: 6623579-Methods and apparatus for fluidic self assembly
S Smith (2003)
Energy Convers. Manage
Y Ikezoe (2002)
10.1038/422579a
Magnetic levitation: Floating gold in cryogenic oxygen
A. T. Catherall (2003)
10.1021/LA990161K
Electrophoretic Deposition To Control Artificial Opal Growth
M. Holgado (1999)



This paper is referenced by
10.1016/J.MEASUREMENT.2019.01.005
A feasible, portable and convenient density measurement method for minerals via magnetic levitation
Jun Xie (2019)
10.1016/J.SNB.2019.05.071
An accurate and versatile density measurement device: Magnetic levitation
J. Xie (2019)
10.1002/app.48431
Evaluation of polymer injection molded parts via density‐based magnetic levitation
P. Zhao (2020)
10.1038/srep03176
Morphing Surfaces Enable Acoustophoretic Contactless Transport of Ultrahigh-Density Matter in Air
Daniele Foresti (2013)
10.1063/1.5007029
Macroscopic equivalence for microscopic motion in a turbulence driven three-dimensional self-assembly reactor
Tijmen A. G. Hageman (2018)
10.1016/J.JMMM.2015.03.022
Directed self-assembly of mesoscopic electronic components into sparse arrays with controlled orientation using diamagnetic levitation
Anton Tkachenko (2015)
10.1016/J.SNA.2018.06.001
Selective bonding method for self-assembly of heterogeneous components using patterned surfaces
Kazuki Kimura (2018)
10.3390/polym12071491
Magnetic Processing of Diamagnetic Materials
M. Yamato (2020)
10.1117/12.2264370
SAW based micro- and acousto-fluidics in biomedicine
Mouli Ramasamy (2017)
10.1002/smll.201503130
Rapid Self-Assembly of Shaped Microtiles into Large, Close-Packed Crystalline Monolayers on Solid Surfaces.
Peng-Yuan Wang (2016)
10.1002/admi.201900963
A thermodynamic description of turbulence as a source of stochastic kinetic energy for 3D self-assembly.
Per Lothman (2019)
10.1002/adma.201902994
3D Self-Assembled Microelectronic Devices: Concepts, Materials, Applications.
Daniil Karnaushenko (2019)
10.1039/C8MH01616J
Label-free manipulation via the magneto-Archimedes effect: fundamentals, methodology and applications
Q. Gao (2019)
10.1126/sciadv.aba2007
Three-dimensional self-assembly using dipolar interaction
Leon Abelmann (2020)
10.1177/0278364914527630
SoftCubes: Stretchable and self-assembling three-dimensional soft modular matter
Sehyuk Yim (2014)
10.1021/ac401899u
Paramagnetic ionic liquids for measurements of density using magnetic levitation.
D. Bwambok (2013)
10.1021/jacs.5b10936
Tilted Magnetic Levitation Enables Measurement of the Complete Range of Densities of Materials with Low Magnetic Permeability.
Alex Nemiroski (2016)
10.1002/ANGE.201305549
Using Magnetic Levitation to Separate Mixtures of Crystal Polymorphs
M. B. J. Atkinson (2013)
10.1134/S1063771015040089
Elastic oscillations of bubbles separated from an air cavity in a magnetic fluid
V. M. Polunin (2015)
10.1002/PSSR.201510298
Using magnetic levitation for 2D and 3D self-assembly of cubic silicon macroparticles
Léon A. Woldering (2016)
10.1364/OE.19.011422
Light-assisted templated self assembly using photonic crystal slabs.
Camilo A. Mejía (2011)
10.1109/JSEN.2019.2949585
Density-Based Measurement and Manipulation via Magnetic Levitation Enhanced by the Dual-Halbach Array
Qiu-Hua Gao (2020)
10.1016/j.cis.2018.08.005
Binary colloidal crystals (BCCs): Interactions, fabrication, and applications.
Farhana Sharmin Diba (2018)
Self-assembly of silicon particles using magnetic levitation
A. Been (2013)
10.5772/intechopen.92148
Magnetic Levitation Based Applications in Bioscience
Fatih Ozefe (2020)
10.1016/j.snb.2019.127362
Axial Magnetic Levitation: A High-sensitive and Maneuverable Density-based Analysis Device
Chengqian Zhang (2020)
10.1063/1.5022727
Tunable rotating-mode density measurement using magnetic levitation
Q. Gao (2018)
10.1039/C9RA02516B
Using magnetic levitation for density-based detection of cooking oils
Chengxian Zhu (2019)
10.1109/ICRA.2013.6630625
SoftCubes: Towards a soft modular matter
Sehyuk Yim (2013)
10.1201/9781315158136
Mechanics of Liquid Nano- and Microdispersed Magnetic Media
Vyacheslav Polunin (2017)
10.1016/J.SNB.2019.01.150
A centrifugal magnetic levitation approach for high-reliability density measurement
Q. Gao (2019)
Semantic Scholar Logo Some data provided by SemanticScholar