Online citations, reference lists, and bibliographies.
← Back to Search

New Nickel–carbon Dioxide Complex: Synthesis, Properties, And Crystallographic Characterization Of (carbon Dioxide)-bis(tricyclohexylphosphine)nickel

M. Aresta, C. F. Nobile, V. G. Albano, Elisabetta Forni, M. Manassero
Published 1975 · Chemistry

Save to my Library
Download PDF
Analyze on Scholarcy
Share
[Ni(CO2)(PCy3)2],0·75(C7H8), where Cy = cyclohexyl, can be made either by treating [Ni(PCy3)3] or [{Ni(PCy3)2}2N2] with CO2 in toluene, or by direct reduction of [NiBr2(PCy3)2] with sodium sand under CO2; the complex is planar, the CO2 ligand possesses bent geometry and is co-ordinated through the carbon atom and one of the oxygen atoms.



This paper is referenced by
10.1021/OM300484Z
“Chiral-at-Metal” Hemilabile Nickel Complexes with a Latent d10-ML2 Configuration: Receiving Substrates with Open Arms
A. Linden (2012)
10.1002/ANGE.201802655
Ein biomimetischer Nickelkomplex mit einem reduzierten, durch Formiatdeprotonierung erzeugten CO2‐Liganden und sein Verhalten gegenüber CO2
P. Zimmermann (2018)
10.1016/0039-6028(86)90717-X
Dynamics of the dissociative adsorption of CO2 on Ni(100)
M. D'evelyn (1986)
10.1016/J.CCR.2014.09.002
Transition metal complex catalyzed carboxylation reactions with CO2
Dingyi Yu (2015)
10.1039/b905537a
Influence of steric pressure on the activation of carbon dioxide and related small molecules by uranium coordination complexes.
O. Lam (2009)
10.1039/c0cp02089c
From CO2 to dimethyl carbonate with dialkyldimethoxystannanes: the key role of monomeric species.
Mahboubeh Poor Kalhor (2011)
10.1039/c2dt32008h
Synthesis and chemistry of bis(triisopropylphosphine) nickel(I) and nickel(0) precursors.
Robert R Beck (2013)
10.1039/c8sc02220h
Mechanisms of catalytic reduction of CO2 with heme and nonheme metal complexes
S. Fukuzumi (2018)
10.1002/0470862106.IA150
Nickel: Inorganic & Coordination Chemistry
S. R. Collinson (2006)
10.1002/9781119951438.EIBC2256
Metal Coordination of CO2
J. Mascetti (2014)
10.1021/ic200589e
First-row transition-metal chloride complexes of the wide bite-angle diphosphine (iPr)DPDBFphos and reactivity studies of monovalent nickel.
E. E. Marlier (2011)
10.1016/B978-008046519-7.00076-9
1 – Nickel Complexes with Carbonyl, Isocyanide, and Carbene Ligands
C. P. Kubiak (1995)
10.1002/EJOC.200700196
Regio‐ and Stereoselective Synthesis of Tri‐ and Tetrasubstituted Alkenes by Introduction of CO2 and Alkylzinc Reagents into Alkynes
M. Mori (2007)
10.1016/J.COMPTC.2017.10.014
A DFT investigation of substituent effects on carbon dioxide fixation: by a low-coordinate cobalt (I) complex
Bruce M. Prince (2017)
10.1016/J.CCR.2017.01.007
Carbon dioxide reduction with homogenous early transition metal complexes: Opportunities and challenges for developing CO2 catalysis
Kyle A Grice (2017)
10.1002/anie.201802655
A Biomimetic Nickel Complex with a Reduced CO2 Ligand Generated by Formate Deprotonation and Its Behaviour towards CO2.
P. Zimmermann (2018)
10.1016/J.SCITOTENV.2019.02.114
CO2 capture and sequestration in stable Ca-oxalate, via Ca-ascorbate promoted green reaction.
L. Pastero (2019)
10.1016/0039-6028(93)90869-L
Physisorbed and chemisorbed CO2 at surface and step sites of the MgO(100) surface
G. Pacchioni (1993)
10.1007/978-94-009-7040-3_7
Activation of Carbon Dioxide via Coordination to Transition Metal Complexes
A. Behr (1983)
10.1007/978-3-030-15868-2_1
Large Scale Utilization of Carbon Dioxide: From Its Reaction with Energy Rich Chemicals to (Co)-processing with Water to Afford Energy Rich Products. Opportunities and Barriers
M. Aresta (2019)
10.1002/EJOC.201601267
Reactivity and Structural Diversity in the Reaction of Guanidine 1,5,7-Triazabicyclo[4.4.0]dec-5-ene with CO2, CS2, and Other Heterocumulenes
N. Wolff (2017)
10.1080/01614940.2020.1812212
Paving way for sustainable earth-abundant metal based catalysts for chemical fixation of CO2 into epoxides for cyclic carbonate formation
Divya Prasad (2020)
10.26850/1678-4618EQJ.V44.1.2019.P11-39
A review on the state-of-the-art advances for CO2 electro-chemical reduction using metal complex molecular catalysts
H. Louis (2019)
10.1246/BCSJ.71.17
Reduction of CO2 Directed toward Carbon–Carbon Bond Formation
K. Tanaka (1998)
10.1002/ZFCH.19830230702
Aktivierung von Kohlendioxid an Übergangsmetallzentren: Neue Wege für die organische und metallorganische Synthese
D. Walther (2010)
10.1039/c5dt01516b
Bond and small-molecule activation with low-valent nickel complexes.
Jorge A. Garduño (2015)
10.1002/9783527699827.CH30
Challenges and Role of Catalysis in CO 2 Conversion to Chemicals and Fuels
V. Ordomsky (2017)
10.1002/CHIN.197544357
NEW NICKEL-CARBON DIOXIDE COMPLEX, SYNTHESIS, PROPERTIES, AND CRYSTALLOGRAPHIC CHARACTERIZATION OF (CARBON DIOXIDE)-BIS(TRICYCLOHEXYLPHOSPHINE)NICKEL
M. Aresta (1975)
10.1021/ACSCATAL.7B00109
Vanadium(V) Catalysts with High Activity for the Coupling of Epoxides and CO2: Characterization of a Putative Catalytic Intermediate
C. Miceli (2017)
10.1021/OM500985Q
Mechanistic Study and Ligand Design for the Formation of Zinc Formate Complexes from Zinc Hydride Complexes and Carbon Dioxide
C. Dong (2015)
10.1002/ZFCH.19880281116
Trimorpholinophosphan‐Nickel(O)‐Komplexe des SO2, CO2 und CS2
T. Hoffmann (2010)
10.1016/0254-0584(91)90037-U
Low-temperature CO2 adsorption on metal oxides: spectroscopic characterization of some weakly adsorbed species
G. Ramis (1991)
See more
Semantic Scholar Logo Some data provided by SemanticScholar