Online citations, reference lists, and bibliographies.
← Back to Search

Functional Interlocked Systems.

S. V. van Dongen, S. Cantekin, J. Elemans, A. Rowan, R. J. Nolte
Published 2014 · Materials Science, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
With the advent of supramolecular chemistry and later nanotechnology a great deal of research has been focused on new types of molecular structures, which are not held together by covalent bonds but by non-covalent mechanical interactions. Examples include the catenane, rotaxane, and knot interlocked structures. The design and synthesis of these architectures is an art by itself and as such is worth being reviewed. In this tutorial review we will focus, however, on the functional aspects of interlocked molecules and discuss how these can find applications, e.g. as artificial muscles, as molecular valves, as components of electronic devices, and as catalysts.
This paper references
10.1126/SCIENCE.1103949
A Reversible Synthetic Rotary Molecular Motor
J. V. Hernández (2004)
Angew. Chem., Int. Ed
De Bo (2011)
10.1038/NMAT1455
Macroscopic transport by synthetic molecular machines
Jose Berna (2005)
10.1016/J.TETLET.2008.03.039
Supramolecular chiral phosphorous ligands based on a [2]pseudorotaxane complex for asymmetric hydrogenation
Y. Li (2008)
10.1073/PNAS.0504109102
A reversible molecular valve.
Thoi D. Nguyen (2005)
Angew. Chem., Int. Ed
A Fernandes (2009)
J. Am. Chem. Soc
A Logsdon (2011)
10.1126/SCIENCE.285.5426.391
Electronically configurable molecular-based logic gates
Collier (1999)
J. Am. Chem. Soc
P H Monnereau (2010)
10.1002/anie.200903215
Rotaxane-based propeptides: protection and enzymatic release of a bioactive pentapeptide.
Anthony Fernandes (2009)
Downloaded on 02/04/2017 07:36:20. This article is licensed under a Creative Commons Attribution-NonCommercial 3
(2013)
10.1002/anie.201201364
A rotaxane-based switchable organocatalyst.
Víctor Blanco (2012)
10.1002/ANIE.200604166
Highly selective Na(+)-templated formation of [2]pseudorotaxanes exhibiting significant optical outputs.
Sheng-Yao Hsueh (2007)
Appl. Phys. Lett
J Huang (2004)
J. Am. Chem. Soc
D Badjic (2006)
10.1039/c2cc17458h
Second generation specific-enzyme-activated rotaxane propeptides.
A. Fernandes (2012)
10.1021/JA075231L
Design and preparation of a chiral ligand based on a pseudorotaxane skeleton: application to rhodium-catalyzed enantioselective hydrogenation of enamides.
G. Hattori (2007)
Tetrahedron Lett
Y Li (2008)
10.1002/ANIE.200603404
Controlled release of guest molecules from mesoporous silica particles based on a pH-responsive polypseudorotaxane motif.
C. Park (2007)
10.1021/JA0543954
Operating molecular elevators.
J. Badjić (2006)
Angew. Chem., Int. Ed
W Steuerman (2004)
Chem. Sci
C Zhang (2012)
10.1063/1.1826222
A nanomechanical device based on linear molecular motors
T. J. Huang (2004)
10.1038/nature01925
Epoxidation of polybutadiene by a topologically linked catalyst
P. Thordarson (2003)
10.1002/CHEM.200501541
Squaraine-derived rotaxanes: highly stable, fluorescent near-IR dyes.
E. Arunkumar (2006)
10.1002/smll.200800233
An AFM/rotaxane molecular reading head for sequence-dependent DNA structures.
B. Ashcroft (2008)
10.1016/j.otohns.2009.05.016
Nature
R. Rosenfeld (2009)
J. Am. Chem. Soc
Y W Angelos (2009)
Chem. Soc. Rev
A Coskun (2012)
Chem. Soc. Rev
A Coskun (2012)
10.1039/B302326P
Towards artificial muscles at the nanometric level.
M. C. Jimenez-Molero (2003)
J. Mater. Chem
J Liu (2010)
10.1002/ANIE.200461723
Molecular-mechanical switch-based solid-state electrochromic devices.
D. Steuerman (2004)
10.1110/ps.10301
A structural basis for processivity
W. Breyer (2001)
10.1002/anie.200705211
pH-responsive supramolecular nanovalves based on cucurbit[6]uril pseudorotaxanes.
S. Angelos (2008)
水素濃度低下に光合成細菌や硫酸還元菌を利用したメタン発酵(Appl.Microbiol.Biotechnol Vol.27,1988)
南 宏和 (1988)
Chem. Commun
N H Evans (2011)
Nat. Chem
M Baumes (2010)
10.1039/C2SC20728A
A solvent-driven molecular spring
Zibin Zhang (2012)
10.1021/JA051088P
Linear artificial molecular muscles.
Y. Liu (2005)
10.1126/SCIENCE.1078012
Information Storage Using Supramolecular Surface Patterns
M. Cavallini (2003)
10.1021/CR00080A007
Interlocking of molecular threads: from the statistical approach to the templated synthesis of catenands
C. Dietrich-Buchecker (1987)
10.1038/nature05452
A molecular information ratchet
V. Serreli (2007)
10.1090/fim/005/14
Small -
O. Urakawa (2007)
Nat. Nanotechnol
P Lussis (2011)
10.1039/c2cs35053j
High hopes: can molecular electronics realise its potential?
Ali Coskun (2012)
10.1126/science.1164647
Mechanism of Threading a Polymer Through a Macrocyclic Ring
Alexander B. C. Deutman (2008)
Angew. Chem., Int. Ed
M Takashima (2011)
Nat. Mater
D A Berná (2005)
10.1002/anie.201103716
Rotaxane-based mechanically linked block copolymers.
G. De Bo (2011)
10.1038/nature05462
A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre
J. Green (2007)
10.1073/pnas.0509011103
Autonomous artificial nanomotor powered by sunlight
V. Balzani (2006)
10.1016/J.POLYMER.2009.12.019
Structure and dynamics of polyrotaxane and slide-ring materials
K. Mayumi (2010)
J. Am. Chem. Soc
A H Liu (2005)
Protein Sci
A Breyer (2001)
10.1039/c1cs15262a
Great expectations: can artificial molecular machines deliver on their promise?
Ali Coskun (2012)
Downloaded on 02/04/2017 07:36:20. This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. View Article Online This journal is
(2013)
10.1126/science.1229753
Sequence-Specific Peptide Synthesis by an Artificial Small-Molecule Machine
B. Lewandowski (2013)
10.1038/nchem.871
Storable, thermally activated, near-infrared chemiluminescent dyes and dye-stained microparticles for optical imaging.
Jeffrey M. Baumes (2010)
10.1039/C2SC20625K
Cucurbit[8]uril-mediated protein homotetramerization
D. T. Dang (2012)
10.1007/s00253-010-3037-x
Polyrotaxanes for applications in life science and biotechnology
J. Li (2010)
Angew. Chem., Int. Ed
S Y Hsueh (2007)
Angew. Chem., Int. Ed
Y.-W Angelos (2008)
10.1021/ja908524x
Porphyrin macrocyclic catalysts for the processive oxidation of polymer substrates.
Cyrille Monnereau (2010)
10.1038/nchem.1752
A clamp-like biohybrid catalyst for DNA oxidation.
S. V. van Dongen (2013)
10.1002/anie.201102834
Artificial molecular clamp: a novel device for synthetic polymerases.
Y. Takashima (2011)
Polymer Integr. Biol
K Mayumi (2010)
Chem. Sci
T Dang (2012)
Angew. Chem., Int. Ed
C Park (2007)
10.1039/b901710k
Bright functional rotaxanes.
Xiang Ma (2010)
10.1039/B915510D
pH- and competitor-driven nanovalves of cucurbit[7]uril pseudorotaxanes based on mesoporous silica supports for controlled release
J. Liu (2010)
Acc. Chem. Res
V Balzani (1998)
Chem. Commun
M C Jimenez-Molero (2003)
Proc. Natl. Acad. Sci. U.S.A. 1992 Lansford
R. Lansford (2013)
10.1038/nnano.2011.132
A single synthetic small molecule that generates force against a load.
Perrine Lussis (2011)
Chem. Commun
A Fernandes (2012)
10.1021/ja7102394
A chemically-driven molecular information ratchet.
M. Álvarez-Pérez (2008)
10.1039/C2SC20072D
Tightening or loosening a pH-sensitive double-lasso molecular machine readily synthesized from an ends-activated [c2]daisy chain
Camille Romuald (2012)
10.1038/nchem.1354
Metal-organic frameworks with dynamic interlocked components.
V. Vukotic (2012)
Nat. Chem
N Vukotic (2012)
Angew. Chem., Int. Ed
C Jiménez (2000)
Nat. Chem
S F M Van Dongen (2013)
Chem.–Eur. J
N Arunkumar (2006)
10.1002/1439-7641(20020617)3:6<519::AID-CPHC519>3.0.CO;2-2
Two-dimensional molecular electronics circuits.
Y. Luo (2002)
10.1021/ja207825y
Nanomolar binding of peptides containing noncanonical amino acids by a synthetic receptor.
Leigh A. Logsdon (2011)
Chem. Soc. Rev
H Ma (2010)
Chem. Sci
A Romuald (2012)
Chem. Commun
J J Gassensmith (2009)
J. Am. Chem. Soc
M Alvarez-Pérez (2008)
10.1039/b911064j
Discovery and early development of squaraine rotaxanes.
Jeremiah J Gassensmith (2009)
10.1039/c2ib20107k
Multi-armed cationic cyclodextrin:poly(ethylene glycol) polyrotaxanes as efficient gene silencing vectors.
Aditya P. Kulkarni (2013)
10.1073/pnas.0603036103
Processive enzyme mimic: Kinetics and thermodynamics of the threading and sliding process
Ruud G. E. Coumans (2006)
10.1021/ja9042752
Dual-controlled nanoparticles exhibiting AND logic.
S. Angelos (2009)
J. Am. Chem. Soc
S M Carlone (2012)
Angew. Chem., Int. Ed
A Blanco (2012)
J. Am. Chem. Soc
G Hattori (2007)
Chem. Rev
O Dietrich-Buchecker (1987)
Downloaded on 05/04/2017 06:31:33. This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. View Article Online This journal is
(2013)
Downloaded on 05/04/2017 06:31:33. This article is licensed under a Creative Commons Attribution-NonCommercial 3
(2013)
10.1021/ja302711z
A three-compartment chemically-driven molecular information ratchet.
Armando Carlone (2012)
10.1002/1521-3757(20000915)112:18<3422::AID-ANGE3422>3.0.CO;2-D
Towards Synthetic Molecular Muscles: Contraction and Stretching of a Linear Rotaxane Dimer
M. Jiménez (2000)
10.1039/c1cc13247d
A redox-active [3]rotaxane capable of binding and electrochemically sensing chloride and sulfate anions.
N. H. Evans (2011)



This paper is referenced by
10.1038/nchem.2712
Cooperative polymerization of α-helices induced by macromolecular architecture.
Ryan Baumgartner (2017)
10.1039/c7cc05235a
Supramolecular five-component nano-oscillator.
D. Samanta (2017)
10.1039/c6cc01980c
A bifunctional chiral [2]catenane based on 1,1'-binaphthyl-phosphates.
R. Mitra (2016)
10.1039/c9cc01984g
Construction of a [2]pseudorotaxane and a [3]pseudorotaxane based on perbromoethylated pillar[5]arene/pyridinium iodide ion-pair recognition.
Li Shao (2019)
10.1002/AJOC.201402286
Spin‐Labelling of Host‐Guest Assemblies with Nitroxide Radicals
E. Mezzina (2015)
10.1002/chem.201900156
[2]Rotaxane End-Capping Synthesis by Click Michael-Type Addition to the Vinyl Sulfonyl Group.
A. G. David (2019)
10.1039/c4dt02591a
Neutral redox-active hydrogen- and halogen-bonding [2]rotaxanes for the electrochemical sensing of chloride.
Jason Y C Lim (2014)
10.1039/c4cc05773b
A trio of nanoswitches in redox-potential controlled communication.
Susnata Pramanik (2014)
10.1021/cr500632f
Stimuli-Responsive Metal-Ligand Assemblies.
A. McConnell (2015)
10.1002/CHIN.201415288
Functional Interlocked Systems
S. Dongen (2014)
10.1021/jacs.6b01852
Directional Molecular Transportation Based on a Catalytic Stopper-Leaving Rotaxane System.
Zheng Meng (2016)
10.1039/c5ob00864f
Construction of photoswitchable rotaxanes and catenanes containing dithienylethene fragments.
Z. Li (2015)
10.1007/430_2015_204
Transition Metal-Based Photofunctional Materials: Recent Advances and Potential Applications
H. Wong (2016)
10.1039/C4SC01438C
Active-template synthesis of “click” [2]rotaxane ligands: self-assembly of mechanically interlocked metallo-supramolecular dimers, macrocycles and oligomers
A. Noor (2014)
10.1039/c4dt01508h
A monomer-dimer nanoswitch that mimics the working principle of the SARS-CoV 3CLpro enzyme controls copper-catalysed cyclopropanation.
S. De (2014)
10.1039/c4cc03077j
CuAAC "click" active-template synthesis of functionalised [2]rotaxanes using small exo-substituted macrocycles: how small is too small?
A. Noor (2014)
10.1002/open.201900293
Remote Control of the Synthesis of a [2]Rotaxane and its Shuttling via Metal‐Ion Translocation
I. Paul (2019)
10.1039/C8TC02919A
Linearly polarized photoluminescence from an asymmetric cyclophane showing thermo- and mechanoresponsive luminescence
Yoshimitsu Sagara (2018)
10.1002/open.201402073
Reversible Mechanical Switching of Magnetic Interactions in a Molecular Shuttle
Valentina Bleve (2015)
10.1002/AJOC.201402197
Acid–Base Driven Ligand Exchange with Palladium(II) “Click” Complexes
A. Noor (2015)
10.1002/CPLU.201402299
Azacrown Ethers from Mustard Carbonate Analogues.
F. Aricò (2015)
10.1002/chem.201601796
Glycoluril-Derived Molecular Clips are Potent and Selective Receptors for Cationic Dyes in Water.
N. She (2016)
10.1080/15421406.2014.927611
Supramolecular Frameworks of Two Cadmium Complexes via Hydrogen-Bonding Assembly
Hua-ze Dong (2015)
10.1007/s10904-015-0186-5
Ligand-Directed Molecular Architectures: Self-Assembly of Five [2+2] Metallacycles from Bis(4-(pyridin-2-yl)pyrimidin-2-ylthio)propane
Hua-ze Dong (2015)
10.1080/10610278.2017.1400031
Rapid and simultaneous synthesis of a hydrogen bond templated [3]rotaxane and its related [2]rotaxane molecular shuttle
N. H. Evans (2018)
10.1039/c4cc02030h
A novel family of structurally stable double stranded DNA catenanes.
Finn Lohmann (2014)
10.1007/978-981-13-1744-6_12-1
Functional Rotaxanes: From Synthetic Methodology to Functional Molecular Materials
Cai-Xin Zhao (2019)
10.1039/c5cc07130e
A four-unit [c2]daisy chain connected by hydrogen bonds.
Q. Zhang (2015)
10.1002/chem.201404187
Efficient end-capping synthesis of neutral donor-acceptor [2]rotaxanes under additive-free and mild conditions.
Y. Domoto (2014)
10.1039/C7NJ05192A
Self-locked dipillar[5]arene-based pseudo[1]rotaxanes and bispseudo[1]rotaxanes with different lengths of bridging chains
S. Jiang (2018)
10.1002/EJOC.201500657
A Cholesterol Containing pH‐Sensitive Bistable [2]Rotaxane
M. Berg (2015)
10.1021/ar500012a
Rotaxane and catenane host structures for sensing charged guest species.
Matthew J Langton (2014)
See more
Semantic Scholar Logo Some data provided by SemanticScholar