Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

Microfluidic LC Device With Orthogonal Sample Extraction For On-chip MALDI-MS Detection.

I. Lazar, Jarod L Kabulski
Published 2013 · Chemistry, Medicine

Save to my Library
Download PDF
Analyze on Scholarcy
Share
A microfluidic device that enables on-chip matrix assisted laser desorption ionization-mass spectrometry (MALDI-MS) detection for liquid chromatography (LC) separations is described. The device comprises an array of functional elements to carry out LC separations, integrates a novel microchip-MS interface to facilitate the orthogonal transposition of the microfluidic LC channel into an array of reservoirs, and enables sensitive MALDI-MS detection directly from the chip. Essentially, the device provides a snapshot MALDI-MS map of the content of the separation channel present on the chip. The detection of proteins with biomarker potential from MCF10A breast epithelial cell extracts, and detection limits in the low fmol range, are demonstrated. In addition, the design of the novel LC-MALDI-MS chip entices the promotion of a new concept for performing sample separations within the limited time-frame that accompanies the dead-volume of a separation channel.
This paper references
Anal. Chem
M Widmer (1992)
J. Chromatogr., A
D Zamfir (1159)
10.1007/S10404-009-0510-X
Interfacing microfluidics to LDI-MS by automatic robotic spotting
C. Tsao (2010)
10.1021/ac300305s
Dried blood spot analysis by digital microfluidics coupled to nanoelectrospray ionization mass spectrometry.
S. C. Shih (2012)
10.1002/smll.201000946
Microfluidic devices for bioapplications.
L. Yeo (2011)
10.1002/rcm.4921
A solid-phase bioreactor with continuous sample deposition for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
J. Lee (2011)
Anal. Chem
S C Jacobson (1994)
10.1016/j.chroma.2010.02.065
Fast proteomic protocol for biomarker fingerprinting in cancerous cells.
Jenny M. Armenta (2010)
10.1002/1615-9861(200204)2:4<373::AID-PROT373>3.0.CO;2-I
Adapting arrays and lab‐on‐a‐chip technology for proteomics
D. Figeys (2002)
Nat. Methods
T Köcher (2007)
Anal. Chem
D Hirschberg (2004)
10.1201/9781420004953
Handbook of capillary and microchip electrophoresis and associated microtechniques
J. Landers (2007)
Lab Chip
S Koster (2007)
Anal. Chem
J A Amarie (2007)
Anal. Chem
T Absolute (2000)
J. Chromatogr., A
A Lord (1997)
J. Micromech. Microeng
T Laurell (1999)
10.1021/AC001326T
Electrophoresis separation in open microchannels. A method for coupling electrophoresis with MALDI-MS.
J. Liu (2001)
Trends Pharmacol. Sci
Y M N Engwegen (2006)
10.1021/AC040044G
Detection of phosphorylated peptides in proteomic analyses using microfluidic compact disk technology.
D. Hirschberg (2004)
J Harrison
10.1021/AC051773E
UV embossed polymeric chip for protein separation and identification based on capillary isoelectric focusing and MALDI-TOF-MS.
X. Guo (2006)
10.1007/978-94-007-0828-0_49
Applications of Microfluidic Devices with Mass Spectrometry Detection in Proteomics
Xiuli Mao (2011)
Mass Spectrom. Rev
M Lazar (2006)
10.1021/AC000530D
Atmospheric pressure MALDI/ion trap mass spectrometry.
V. Laiko (2000)
Lab Chip
N R Brivio (2005)
10.1021/AC0203950
Multiple open-channel electroosmotic pumping system for microfluidic sample handling.
I. Lazar (2002)
10.1002/ELPS.200500317
Direct coupling of polymer‐based microchip electrophoresis to online MALDI‐MS using a rotating ball inlet
Harrison K. Musyimi (2005)
10.1016/S0021-9673(96)01081-3
Tapers and restrictors for capillary electrochromatography and capillary electrochromatography-mass spectrometry
G. Lord (1997)
Anal. Biochem
A Lueking (1999)
10.1016/j.chroma.2011.07.083
Applications of superficially porous particles: high speed, high efficiency or both?
X. Wang (2012)
10.1002/RCM.994
An atmospheric pressure matrix-assisted laser desorption/ionization ion trap with enhanced sensitivity.
C. A. Miller (2003)
10.1088/0960-1317/9/4/314
Design and development of a silicon microfabricated flow-through dispenser for on-line picolitre sample handling
T. Laurell (1999)
10.1006/ABIO.1999.4063
Protein microarrays for gene expression and antibody screening.
A. Lueking (1999)
10.1002/elps.200890050
BIOANALYSIS
A. Rizzi (2008)
10.1021/AC030194B
Integrated sample preparation and MALDI mass spectrometry on a microfluidic compact disk.
M. Gustafsson (2004)
10.1155/2010/453045
Proteomics
B. Garcia (2010)
10.1002/MAS.20081
Microfabricated devices: A new sample introduction approach to mass spectrometry.
I. Lazar (2006)
10.1255/ejms.834
Microdevices in Mass Spectrometry
F. Foret (2007)
10.1021/AC011098I
Atmospheric pressure matrix-assisted laser desorption/ionization in transmission geometry.
M. Galicia (2002)
J. Chromatogr., A
K Horie (1228)
Anal. Chem
A J Chatterjee (2010)
Chemistry Lab Chip Lab on a Chip Paper Open Access Article. Published on
(2013)
Rev. Phys. Chem. Japan
S Kubota (1979)
10.1002/PMIC.200390007
Protein arrays: The current state‐of‐the‐art
P. Cutler (2003)
10.1016/j.jasms.2008.03.015
Development of an automated digestion and droplet deposition microfluidic chip for MALDI-TOF MS
J. Lee (2008)
10.1016/J.CHROMA.2006.09.006
Viscosity measurements of methanol-water and acetonitrile-water mixtures at pressures up to 3500 bar using a novel capillary time-of-flight viscometer.
J. Thompson (2006)
Lab Chip
E Kirby (2013)
10.1016/j.aca.2009.07.037
Microfluidics with MALDI analysis for proteomics--a review.
J. Lee (2009)
10.1002/mas.20238
Microchip technology in mass spectrometry.
Tiina Sikanen (2010)
10.1021/AC0714967
Compact microfluidic structures for generating spatial and temporal gradients.
Dragos Amarie (2007)
J. Chromatogr., A
M Armenta (2010)
Anal. Chim. Acta
S A Lee (2009)
Rapid Commun. Mass Spectrom
S A Lee (2011)
Anal. Chem
M Lazar (2006)
J. Chromatogr., A
K Broeckhoven (1228)
Analyst
L.-S Mok (2004)
10.1039/c3lc41431k
Microfluidic origami: a new device format for in-line reaction monitoring by nanoelectrospray ionization mass spectrometry.
A. Kirby (2013)
10.1016/j.chroma.2011.08.003
Kinetic plot based comparison of the efficiency and peak capacity of high-performance liquid chromatography columns: theoretical background and selected examples.
K. Broeckhoven (2012)
10.1016/J.CHROMA.2007.03.115
Recent advances in sheathless interfacing of capillary electrophoresis and electrospray ionization mass spectrometry.
A. Zamfir (2007)
10.1016/j.chroma.2011.12.088
Estimation and optimization of the peak capacity of one-dimensional gradient high performance liquid chromatography using a long monolithic silica capillary column.
K. Horie (2012)
Am. Soc. Mass Spectrom
H K Lee (2008)
Downloaded on 04/04/2017 08:36:25. This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. View Article Online 18
Lab Chip (2010)
10.1039/B418986H
A MALDI-chip integrated system with a monitoring window.
M. Brivio (2005)
Mass Spectrom. Rev
S Sikanen (2010)
10.1039/B709706A
A decade of microfluidic analysis coupled with electrospray mass spectrometry: an overview.
S. Koster (2007)
J. Chromatogr., A
W Thompson (1134)
Anal. Chem
M Gustafsson (2004)
Anal. Chem
M Lazar (2002)
J. Chromatogr., A
W E Wang (1228)
10.1039/B309610F
Capillary isoelectric focusing in pseudo-closed channel coupled to matrix assisted laser desorption/ionization mass spectrometry for protein analysis.
Michelle L-S Mok (2004)
Anal. Chem
K Liu (2001)
10.1016/J.TIPS.2006.03.003
Clinical proteomics: searching for better tumour markers with SELDI-TOF mass spectrometry.
Judith Y. M. N. Engwegen (2006)
Rapid Commun. Mass Spectrom
H A Sarvaiya (2006)
Anal. Chem
M C Galicia (2002)
10.1021/AC00079A028
Effects of injection schemes and column geometry on the performance of microchip electrophoresis devices
S. Jacobson (1994)
10.6013/jbrewsocjapan1988.86.425
基礎講座 電気泳動(Electrophoresis)
大房 健 (2005)
10.1021/ac9029373
Integration of protein processing steps on a droplet microfluidics platform for MALDI-MS analysis.
D. Chatterjee (2010)
Anal. Bioanal. Chem
M Yang (2012)
10.1021/AC00041A030
Capillary electrophoresis and sample injection systems integrated on a planar glass chip
D. Harrison (1992)
10.1002/RCM.2677
Proteome profile of the MCF7 cancer cell line: a mass spectrometric evaluation.
Hetal A. Sarvaiya (2006)
10.1002/elps.200800427
Recent advances in capillary and microfluidic platforms with MS detection for the analysis of phosphoproteins
I. Lazar (2009)
Eur. J. Mass Spectrom
P Foret (2007)
10.1002/(SICI)1096-9888(200003)35:3<369::AID-JMS944>3.0.CO;2-N
Capillary liquid chromatography interfaced to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using an on-line coupled piezoelectric flow-through microdispenser
Miliotis (2000)
J. Mass Spectrom
S Miliotis (2000)
10.1007/s00216-012-6257-3
Direct detection of peptides and proteins on a microfluidic platform with MALDI mass spectrometry
Mian Yang (2012)
Rapid Commun. Mass Spectrom
A Miller (2003)
Anal. Chem
S C C Shih (2012)
10.1002/1615-9861(200101)1:1<13::AID-PROT13>3.0.CO;2-J
Arrays for protein expression profiling: Towards a viable alternative to two‐dimensional gel electrophoresis?
R. Jenkins (2001)
10.1090/fim/005/14
Small -
O. Urakawa (2007)
10.4155/bio.09.86
Recent advances in microfluidic detection systems.
C. Baker (2009)
10.1038/nmeth1093
Mass spectrometry–based functional proteomics: from molecular machines to protein networks
T. Köcher (2007)
10.1021/AC060434Y
Microfluidic liquid chromatography system for proteomic applications and biomarker screening.
I. Lazar (2006)
Anal. Chem
M B Guo (2006)



This paper is referenced by
10.1088/1674-1056/25/6/066801
Mechanism of contact angle saturation and an energy-based model for electrowetting
R. Zhao (2016)
MEMS mass spectrometers : the next wave of miniaturization
D. Leitao (2016)
10.1016/j.copbio.2014.08.009
Lab-on-a-Chip hyphenation with mass spectrometry: strategies for bioanalytical applications.
Amar Oedit (2015)
10.1007/s00216-015-8572-y
Microfluidic aqueous two-phase extraction of bisphenol A using ionic liquid for high-performance liquid chromatography analysis
Linlin Qi (2015)
10.1117/12.2036622
Dielectrowetting-based manipulation of droplet and application in light valve
R. Zhao (2013)
10.1016/j.chroma.2014.10.039
Microfluidics-to-mass spectrometry: a review of coupling methods and applications.
X. Wang (2015)
10.3791/53564
Fast Enzymatic Processing of Proteins for MS Detection with a Flow-through Microreactor.
I. Lazar (2016)
10.1039/C6RA03864F
A bactericidal microfluidic device constructed using nano-textured black silicon
Xuewen Wang (2016)
10.1088/0960-1317/26/2/023001
MEMS Mass Spectrometers: the Next Wave of Miniaturization
R. Syms (2016)
10.1016/j.trac.2020.116003
Miniaturization of liquid chromatography coupled to mass spectrometry. 3. Achievements on chip-based LC–MS devices
Deyber Arley Vargas Medina (2020)
10.1039/c7an01548h
A piezo-ring-on-chip microfluidic device for simple and low-cost mass spectrometry interfacing.
C. Tsao (2018)
10.1007/978-1-4939-8964-5_15
Achieving Stable Electrospray Ionization Mass Spectrometry Detection from Microfluidic Chips.
I. Lazar (2019)
10.1016/B978-0-12-802971-8.00011-0
Advances in Microfluidics and Lab-on-a-Chip Technologies
H. Jayamohan (2017)
10.1016/J.TRAC.2018.05.002
Towards fully integrated liquid chromatography on a chip: Evolution and evaluation
F. Haghighi (2018)
10.1038/S41378-019-0048-3
Microfluidic reactors for advancing the MS analysis of fast biological responses
I. Lazar (2019)
10.1016/j.tibtech.2017.06.006
Microfluidic-Mass Spectrometry Interfaces for Translational Proteomics.
R. Pedde (2017)
10.1039/c4lc90059f
Guest editorial: funding for innovative cancer-relevant technology development.
Anthony Dickherber (2014)
10.1016/j.aca.2018.01.064
Particle-based liquid chromatographic separations in microfluidic devices - A review.
Á. Kecskeméti (2018)
10.1016/J.TRAC.2015.08.002
Advances in and prospects of microchip liquid chromatography.
James P. Grinias (2016)
10.1016/j.talanta.2017.09.016
Miniaturized high-performance liquid chromatography instrumentation.
Kyle B. Lynch (2018)
10.1007/978-981-10-5394-8_9
Microfluidics-Mass Spectrometry for Cell Analysis
Ling Lin (2018)
10.1016/J.CHROMA.2014.10.008
High-performance liquid chromatography on glass chips using precisely defined porous polymer monoliths as particle retaining elements.
S. Thurmann (2014)
10.1038/s41378-020-0175-x
Chip-based ion chromatography (chip-IC) with a sensitive five-electrode conductivity detector for the simultaneous detection of multiple ions in drinking water
X. Li (2020)
10.1016/J.CCLET.2017.05.024
Multi-channel microfluidic chip-mass spectrometry platform for cell analysis
Mingsha Jie (2017)
10.1016/j.biotechadv.2017.04.003
Toward biotechnology in space: High-throughput instruments for in situ biological research beyond Earth.
Fathi Karouia (2017)
Semantic Scholar Logo Some data provided by SemanticScholar