Online citations, reference lists, and bibliographies.
← Back to Search

Studies On The Stabilized Ubisemiquinone Species In The Succinate-cytochrome C Reductase Segment Of The Intact Mitochondrial Membrane System

J C Salerno, T Ohnishi

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
1. Evidence is presented for the presence of a stable ubisemiquinone pair in the vicinity of iron-sulphur centre S-3, based on its thermodynamic and spin relaxation properties. 2. These semiquinones are coupled by dipolar interaction; quantitative analysis of the signals of the spin-coupled semiquinones (at pH 7.4) gives midpoint redox potentials E1 (oxidized to semiquinone state) and E2 (semiquinone to fully reduced state) of 140 and 80mV, respectively, for individual ubiquinones. 3. Values of pKS (pK of the semiquinone form) below 6.5 and pKR (pK of the fully reduced ubiquinone) of about 8.0 or above were estimated from the pH-dependence of the midpoint potentials of the spin coupled signals. Thus the ubisemiquinone associated with succinate dehydrogenase (designated as SQS) functions mostly in the anionic form of the physiological pH range. 4. Theonyltrifluoroacetone, a specific inhibitor of the succinate-ubiquinone reductase segment of the respiratory chain, destabilized the intermediate redox state; thus it quenches both the g = 2.00 signal and ubisemiquinone (SQS) and split signals from the spin coupled pair. This inhibitor has no significant effect on another bound ubisemiquinone species present in the cytochrome bc1 region (designated as SQC). 5. The possible function and location of these stabilized ubisemiquinone species were discussed in connection with Site-II energy transduction.