Online citations, reference lists, and bibliographies.

Moderne Endoskopische Bildgebungsverfahren Für Das Urothelkarzinom Der Harnblase.

Maximilian C. Kriegmair, Markus Ritter, Maurice Stephan Michel, Christian Bolenz
Published 2017 · Medicine
Cite This
Download PDF
Analyze on Scholarcy
Share
Die primare Diagnostik und Therapie des Urothelkarzinoms (UCC) der Harnblase erfolgt endoskopisch. Eine moglichst sichere Differenzierung zwischen benignen Lasionen und maligne entartetem Urothel ist erforderlich. Die Weislichtzystoskopie gilt als Goldstandard, jedoch bestehen Limitationen bei der Detektion kleiner Tumore und des Carcinoma in situ. Mit der Photodyamischen Diagnostik (PDD) und dem Narrow Band Imaging (NBI) stehen zwei klinisch etablierte Techniken zur Verfugung, die die Detektionsrate verbessern und die Rezidivrate eines Urothelkarzinoms senken konnen. Das Storz Professional Imaging Enhancement System (SPIES) beruht auf einer digitalen Kontrastverstarkung und wird aktuell in klinischen Studien evaluiert. Mit der konfokalen Laser-Endomikroskopie (CLE) wird das Prinzip der optischen Biopsie verfolgt. Sie erlaubt bereits intraoperativ die Darstellung des Gewebes mit einer der Lichtmikroskopie vergleichbaren Auflosung. Die optische Koharenztomografie (OCT) stellt intraoperativ Querschnittsbilder der Harnblasenwand dar und liefert Informationen zur Eindringtiefe des Tumors. Eine weitere Erganzung ist die Raman-Spektroskopie, die uber Spektralanalysen die Beurteilung der Zusammensetzung von Material und Gewebe erlaubt. Die zunehmende molekulare Entschlusselung des Urothelkarzinoms der Harnblase bietet neue Chancen fur die Endoskopie. In Zukunft werden moderne Fotosensibilisatoren uber molekulare Zielstrukturen spezifisch an Urothelkarzinomzellen binden, um malignes Gewebe sensitiver zu detektieren. Softwarebasierte Bildgebungsmodalitaten bieten neben der Unterstutzung bei der Interpretation von endoskopischen Bildern diverse Moglichkeiten fur eine verbesserte digitale Befunddokumentation und -kommunikation. Die vorliegende Arbeit stellt die modernen endoskopischen Bildgebungsverfahren vor und diskutiert deren potenziellen klinischen Nutzen.
This paper references
10.1089/end.2014.1651
The Storz professional image enhancement system(spies) nonmuscle-invasive bladder cancer study:a multicenter international randomized controlled study.
Stavros Gravas (2014)
10.1245/s10434-016-5690-5
Preclinical Evaluation of Cathepsin-Based Fluorescent Imaging System for Cytoreductive Surgery
Carlos H F Chan (2016)
10.1111/j.1464-410X.2012.11500.x
Narrow band imaging diagnosis of bladder cancer: systematic review and meta-analysis.
Changjian Zheng (2012)
10.1089/end.2005.19.570
Evaluation of superficial bladder transitional-cell carcinoma by optical coherence tomography.
Michael J. Manyak (2005)
10.1364/OE.25.012812
Spectral and temporal multiplexing for multispectral fluorescence and reflectance imaging using two color sensors.
Nikolas Dimitriadis (2017)
10.4172/1948-5956.1000394
Storz Professional Image Enhancement System: A New Technique toImprove Endoscopic Bladder Imaging
Guido Kamphuis (2016)
10.1007/s00345-015-1485-8
Fluorescence-guided bladder tumour resection: impact on survival after radical cystectomy
Georgios Gakis (2015)
10.1016/j.juro.2007.03.034
A phase III, multicenter comparison of hexaminolevulinate fluorescence cystoscopy and white light cystoscopy for the detection of superficial papillary lesions in patients with bladder cancer.
Herbert Barton Grossman (2007)
10.1016/j.eururo.2013.03.059
Photodynamic diagnosis of non-muscle-invasive bladder cancer with hexaminolevulinate cystoscopy: a meta-analysis of detection and recurrence based on raw data.
Maximilian Burger (2013)
10.1016/S0022-5347(05)67975-X
Multivariate analysis of the prognostic factors of primary superficial bladder cancer.
Félix Millán-Rodríguez (2000)
10.1053/hupa.2001.24999
Correlation of cystoscopic impression with histologic diagnosis of biopsy specimens of the bladder.
Stephen J. Cina (2001)
10.1016/j.urology.2009.11.075
Narrow band imaging cystoscopy improves the detection of non-muscle-invasive bladder cancer.
Evelyne C. C. Cauberg (2010)
10.1016/j.eururo.2014.06.049
Randomized trial of narrow-band versus white-light cystoscopy for restaging (second-look) transurethral resection of bladder tumors.
Harry W. Herr (2015)
10.1016/j.eururo.2012.01.018
A randomized prospective trial to assess the impact of transurethral resection in narrow band imaging modality on non-muscle-invasive bladder cancer recurrence.
Angelo Naselli (2012)
10.1016/j.urology.2011.08.081
Narrow band imaging cystoscopy and bipolar plasma vaporization for large nonmuscle-invasive bladder tumors--results of a prospective, randomized comparison to the standard approach.
Bogdan Florin Geavlete (2012)
10.1016/j.bpg.2015.05.013
Characterization of lesions in the stomach: will confocal laser endomicroscopy replace the pathologist?
Martin Goetz (2015)
10.1016/j.urology.2017.02.019
Digital Mapping of the Urinary Bladder: Potential for Standardized Cystoscopy Reports.
Maximilian C. Kriegmair (2017)
10.1016/j.eururo.2013.07.007
Hexyl aminolevulinate-guided fluorescence cystoscopy in the diagnosis and follow-up of patients with non-muscle-invasive bladder cancer: a critical review of the current literature.
Michael Rink (2013)
10.1111/j.1464-410X.2006.06144.x
The value of a second transurethral resection for T1 bladder cancer.
Hartwig E Schwaibold (2006)
10.1089/end.2012.1556
Global randomized narrow band imaging versus white light study in nonmuscle invasive bladder cancer: accession to the first milestone-enrollment of 600 patients.
Seiji Prof Naito (2013)
10.1016/j.pdpdt.2015.07.174
Expression of ferrochelatase has a strong correlation in protoporphyrin IX accumulation with photodynamic detection of bladder cancer.
Yasushi Nakai (2016)
10.1089/end.2012.0549
Interobserver agreement of confocal laser endomicroscopy for bladder cancer.
Timothy Chang (2013)
10.1007/s00345-016-1877-4
Impact of photodynamic diagnosis-assisted transurethral resection of bladder tumors on the prognostic outcome after radical cystectomy: results from PROMETRICS 2011
Matthias May (2016)
10.3233/BLC-160060
Systematic Review and Meta-Analysis on the Impact of Hexaminolevulinate- Versus White-Light Guided Transurethral Bladder Tumor Resection on Progression in Non-Muscle Invasive Bladder Cancer
Georgios Gakis (2016)
10.1111/j.1464-410X.2004.04852.x
The use of Raman spectroscopy to identify and characterize transitional cell carcinoma in vitro.
Paul A. Crow (2004)
10.1016/j.urology.2008.02.002
Optical coherence tomography as an adjunct to white light cystoscopy for intravesical real-time imaging and staging of bladder cancer.
Alvin C. Goh (2007)
10.1186/1746-1596-7-98
Optical endomicroscopy and the road to real-time, in vivo pathology: present and future
Charles S. Carignan (2012)
10.1016/j.eururo.2009.07.042
Fluorescence cystoscopy with high-resolution optical coherence tomography imaging as an adjunct reduces false-positive findings in the diagnosis of urothelial carcinoma of the bladder.
Jörg Schmidbauer (2009)
10.1016/J.EURURO.2007.11.048
Photodynamic diagnosis in urology: state-of-the-art.
Dieter Jocham (2008)
10.18632/oncotarget.13054
Narrow band imaging-assisted transurethral resection reduces the recurrence risk of non-muscle invasive bladder cancer: A systematic review and meta-analysis
Weiting Kang (2017)
10.1016/j.urology.2009.06.088
Hexaminolevulinate is equal to 5-aminolevulinic acid concerning residual tumor and recurrence rate following photodynamic diagnostic assisted transurethral resection of bladder tumors.
Maximilian Burger (2009)
10.1097/01.ju.0000169257.19841.2a
Improved detection and treatment of bladder cancer using hexaminolevulinate imaging: a prospective, phase III multicenter study.
Dieter Jocham (2005)
10.1089/end.2015.0523
A Pilot Study of In Vivo Confocal Laser Endomicroscopy of Upper Tract Urothelial Carcinoma.
Daniel Le Bui (2015)
10.1117/1.2981827
Endoscopic image analysis of photosensitizer fluorescence as a promising noninvasive approach for pathological grading of bladder cancer in situ.
James Chen Yong Kah (2008)
10.1007/s00280-010-1375-0
Biodistribution of PVP-hypericin and hexaminolevulinate-induced PpIX in normal and orthotopic tumor-bearing rat urinary bladder
Joachim Vandepitte (2010)
10.1055/s-2006-944813
Confocal laser endomicroscopy: technical status and current indications.
Arthur E. Hoffman (2006)
10.1055/S-0035-1549992
Molekulare Charakterisierung des Urothelkarzinoms der Harnblase: Ist ein klinischer Nutzen in Sicht?
Philipp Erben (2015)
10.1016/j.eururo.2006.05.021
Discrepancy between clinical and pathologic stage: impact on prognosis after radical cystectomy.
Shahrokh F Shariat (2007)
10.1371/journal.pone.0074142
Therapeutic Outcome of Fluorescence Cystoscopy Guided Transurethral Resection in Patients with Non-Muscle Invasive Bladder Cancer: A Meta-Analysis of Randomized Controlled Trials
Haichao Yuan (2013)
10.1016/j.juro.2009.06.039
Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy.
Geoffrey A. Sonn (2009)
10.1016/j.ajpath.2012.01.023
Cathepsin E, maspin, Plk1, and survivin are promising prognostic protein markers for progression in non-muscle invasive bladder cancer.
Niels Fristrup (2012)
10.1111/j.1464-410X.2010.09547.x
Reduced bladder tumour recurrence rate associated with narrow-band imaging surveillance cystoscopy.
Harry W. Herr (2011)
10.1016/j.urology.2011.02.057
Dynamic real-time microscopy of the urinary tract using confocal laser endomicroscopy.
Katherine Wu (2011)
10.1046/j.1464-410x.1999.00997.x
Air cystoscopy: the history of an endoscopic technique from the late 19th century.
Dirk Schultheiss (1999)
10.1016/S0022-5347(01)66559-5
Detection of early bladder cancer by 5-aminolevulinic acid induced porphyrin fluorescence.
Martin Kriegmair (1996)
10.1016/S0022-5347(09)61175-7
OPTICAL COHERENCE TOMOGRAPHY (OCT) - A MINIMALLY INVASIVE TECHNIQUE FOR THE DETECTION OF LESIONS WITHIN THE BLADDER
Alexander H. Karl (2009)
10.1016/j.juro.2010.06.148
Hexaminolevulinate guided fluorescence cystoscopy reduces recurrence in patients with nonmuscle invasive bladder cancer.
Arnulf Stenzl (2010)
10.1046/j.1464-410X.2002.02690.x
Hypericin-based fluorescence diagnosis of bladder carcinoma.
Marie-Ange D'Hallewin (2002)
10.1016/S0022-5347(05)66532-9
Second resection and prognosis of primary high risk superficial bladder cancer: is cystectomy often too early?
Andreas Brauers (2001)
10.1039/c5an01786f
Raman technologies in cancer diagnostics.
Lauren A. Austin (2016)
10.1126/scitranslmed.3009457
Endoscopic molecular imaging of human bladder cancer using a CD47 antibody
Ying Pan (2014)
10.1016/1011-1344(93)80127-U
Porphyrins, porphyrias, cancer and photodynamic therapy--a model for carcinogenesis.
A Batlle (1993)
10.1136/amiajnl-2011-000221
Point-of-care clinical documentation: assessment of a bladder cancer informatics tool (eCancerCareBladder): a randomized controlled study of efficacy, efficiency and user friendliness compared with standard electronic medical records
Peter J. Bostrom (2011)
10.1089/end.2006.20.54
Comparison of resolution, contrast, and color differentiation among fiberoptic and digital flexible cystoscopes.
James F. Borin (2006)
10.1016/j.gie.2013.09.020
In vivo endomicroscopy improves detection of Barrett's esophagus-related neoplasia: a multicenter international randomized controlled trial (with video).
Marcia Irene Canto (2014)
10.1002/cncr.28905
Novel endoscopic diagnosis for bladder cancer.
Seth P. Lerner (2015)
10.2214/AJR.15.15996
Progress in Fully Automated Abdominal CT Interpretation.
Ronald M. Summers (2016)
10.1016/j.eururo.2016.05.041
EAU Guidelines on Non-Muscle-invasive Urothelial Carcinoma of the Bladder: Update 2016.
Marko Babjuk (2017)
10.1021/ac100448p
In vivo bladder cancer diagnosis by high-volume Raman spectroscopy.
Ronald O.P. Draga (2010)
10.1007/s00345-011-0659-2
Narrow band imaging-assisted transurethral resection for non-muscle invasive bladder cancer significantly reduces residual tumour rate
Evelyne C. C. Cauberg (2011)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar