Online citations, reference lists, and bibliographies.
← Back to Search

On The Linewidth Of Microcavity Lasers

G. Björk, A. Karlsson, Y. Yamamoto
Published 1992 · Physics

Cite This
Download PDF
Analyze on Scholarcy
Share
In a recent letter by G. P. Agrawal and G. R. Gray [Appl. Phys. Lett. 59, 399 (1991)] the frequency and phase noise of vertical‐cavity surface‐emitting microlasers is calculated using rate equations and Langevin noise sources. In this letter we re‐examine their calculations and get different results. Specifically, we predict that an increase of the spontaneous emission coupling coefficient will not necessarily lead to an increase in linewidth. It is also found that the reported ‘‘anomalous linewidth enhancement’’ is present in all lasers with a nonzero linewidth enhancement factor.
This paper references
10.1103/PHYSREVA.44.657
Microcavity semiconductor laser with enhanced spontaneous emission.
Yamamoto (1991)
10.1103/PHYSREVLETT.55.2137
Inhibited spontaneous emission by a Rydberg atom.
Hulet (1985)
10.1103/PHYSREVLETT.59.2955
Anomalous spontaneous emission time in a microscopic optical cavity.
De Martini F (1987)
10.1103/PHYSREVLETT.60.1711
Anomalous spontaneous-stimulated-decay phase transition and zero-threshold laser action in a microscopic cavity.
De Martini F (1988)
10.1109/3.100877
Analysis of semiconductor microcavity lasers using rate equations
G. Björk (1991)
10.1103/PHYSREVA.44.669
Modification of spontaneous emission rate in planar dielectric microcavity structures.
Björk (1991)
10.1103/PHYSREVLETT.58.1320
Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator.
Heinzen (1987)
10.1063/1.103771
Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities
H. Yokoyama (1990)
10.1103/PHYSREVLETT.50.1903
Observation of cavity-enhanced single-atom spontaneous emission
P. Goy (1983)
10.1109/JQE.1986.1072889
Internal and external field fluctuations of a laser oscillator: Part I--Quantum mechanical Langevin treatment
Y. Yamamoto (1986)
10.1103/PHYSREVLETT.61.2546
Inhibited and enhanced spontaneous emission from optically thin AlGaAs/GaAs double heterostructures.
Yablonovitch (1988)
10.1109/3.89951
Spontaneous emission factor of a microcavity DBR surface-emitting laser
T. Baba (1991)
10.1063/1.105443
Intensity and phase noise in microcavity surface-emitting semiconductor lasers
G. Agrawal (1991)



This paper is referenced by
10.1002/LPOR.201000039
Single quantum dot nanolaser
S. Strauf (2011)
10.21767/2471-9838-C5-019
Photonic crystal circular defect (CirD) laser
M. Kondow (2018)
10.1016/B978-012397630-7/50005-6
Chapter 5 – Quantum Optics Effects in Semiconductor Lasers
Y. Yamamoto (1999)
10.4028/www.scientific.net/AST.82.9
Passive and Active Nanophotonics
Y. Fainman (2012)
10.7907/6F0A-TD74.
Wavelength-scale confinement of light and its applications in on-chip photonic devices
Jingqing Huang (2012)
10.1364/OPTICA.2.000066
Near thresholdless laser operation at room temperature
I. Prieto (2015)
10.1038/nature10840
Thresholdless nanoscale coaxial lasers
M. Khajavikhan (2012)
10.1109/68.491551
Spontaneous emission factor in post microcavity lasers
R. J. Ram (1996)
10.1364/OE.18.007872
Optomechanical zipper cavity lasers: theoretical analysis of tuning range and stability.
T. Alegre (2010)
10.1007/978-1-4615-1963-8_16
Spontaneous Emission Control in Semiconductor Microcavities
G. Björk (1995)
Ultra-Low Threshold Monolayer Semiconductor Nanocavity Lasers
S. Wu (2015)
10.1109/ICTON.2009.5185120
Coupled photonic-crystal cavities and quantum-wire microlasers
Kirill A. Atlasov (2009)
10.1038/NPHOTON.2010.177
High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted
S. Matsuo (2010)
10.1063/1.1767983
Ultralow-threshold cryogenic vertical-cavity surface-emitting laser with AlAsoxide–GaAs distributed Bragg reflectors
V. Haisler (2004)
10.1364/AOP.6.000001
Subwavelength semiconductor lasers for dense chip-scale integration
Q. Gu (2014)
10.1364/OE.17.000640
Photonic band-edge micro lasers with quantum dot gain.
M. Nomura (2009)
10.1364/OE.23.000702
Heterogeneously integrated photonic-crystal lasers on silicon for on/off chip optical interconnects.
K. Takeda (2015)
10.1364/OE.17.018178
Photonic-crystal microcavity laser with site-controlled quantum-wire active medium.
K. Atlasov (2009)
III-V semiconductor nanocavities on silicon-on insulator waveguide : laser emission, switching and optical memory
A. Bazin (2013)
10.1364/ECEOC.2012.TH.1.E.2
Electrically-pumped photonic crystal lasers for optical communications
S. Matsuo (2012)
On the rate equations of semiconductor lasers for measuring spontaneous emission factor
Yong-Zhen Huang (1995)
10.1109/CLEOPR.2009.5292300
Photonic crystal nanocavity lasers with InAs quantum dots bonded onto silicon substrates
Katsuaki Tanabe (2009)
10.1016/J.SSC.2010.07.009
Coherence properties of InAs quantum dot emissions from quasi-L2 photonic crystal nanocavities
Wen-Yen Chen (2010)
10.1364/ACPC.2012.AF4A.3
Few-quantum-dot lasing in photonic crystal nanocavities
J. Liu (2011)
10.1063/1.108998
Frequency tuning of a double‐heterojunction AlGaAs/GaAs‐vertical‐cavity surface‐emitting laser by a serial integrated in‐cavity modulator diode
C. Gmachl (1993)
10.1002/9783527655342.CH1
Nanoscale Metallo-Dielectric Coherent Light Sources
M. Nezhad (2014)
10.1109/JSTQE.2013.2249048
Ultralow Operating Energy Electrically Driven Photonic Crystal Lasers
S. Matsuo (2013)
10.1103/PhysRevLett.96.127404
Self-tuned quantum dot gain in photonic crystal lasers.
S. Strauf (2006)
10.1364/OE.17.007036
Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate.
K. Tanabe (2009)
10.1063/1.3266843
Surface-plasmon mode hybridization in subwavelength microdisk lasers
R. Perahia (2009)
10.1533/9780857096395.2.115
Highly efficient quantum dot micropillar lasers
Stephan Reitzenstein (2012)
10.1109/LEOSWT.2009.4771627
Observation of stimulated emission and lasing in quantum-wire photonic-crystal nanocavities
Kirill A. Atlasov (2009)
See more
Semantic Scholar Logo Some data provided by SemanticScholar