Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

Performance Of An Energy-compensated Three-dimensional Atom Probe

A. Cerezo, T. Godfrey, S. J. Sijbrandij, G. Smith, P. Warren
Published 1998 · Physics

Save to my Library
Download PDF
Analyze on Scholarcy
Share
A wide acceptance angle first-order reflectron lens has been incorporated into a three-dimensional atom probe (3DAP) to provide improved mass resolution. This new 3DAP instrument is capable of resolving isotopes in the mass spectrum, with resolutions better than m/Δm=500 full width at half maximum and 250 full width at 10% maximum. However, use of a reflectron for energy compensation within an imaging system means that improvements in mass resolution result in degradation of the spatial resolution. This article addresses the detailed design of the energy compensated 3DAP, and the minimization and compensation of chromatic aberrations in the imaging performance of the instrument. Some applications of the new instrument are included to illustrate its capabilities in the atomic-scale analysis of engineering alloys.
This paper references
10.1016/0039-6028(91)90447-Z
Concepts in atom probe designs
M. Miller (1990)
Atom Probe Microanalysis: Principles and Applications to Materials Problems
M. Miller (1989)
10.1016/0169-4332(94)90370-0
Improvements in three-dimensional atom probe design
A. Cerezo (1994)
10.1051/JPHYSCOL:1989893
TIME FOCUSING IN A FIELD PULSED ATOM-PROBE WITH A REFLECTRON
W. Drachsel (1989)
10.1063/1.1139794
Application of a position-sensitive detector to atom probe microanalysis
A. Cerezo (1988)
10.1063/1.1686295
The 10 cm Atom Probe
J. Panitz (1973)
10.1016/0039-6028(76)90411-8
Investigations of field evaporation with a field-desorption microscope
A. R. Waugh (1976)
10.1063/1.1683116
The Atom‐Probe Field Ion Microscope
E. Müller (1968)
10.1016/0020-7381(72)80020-2
Multiple-focusing time-of-flight mass spectrometers Part II. TOFMS with equal energy acceleration
W. Poschenrieder (1971)
10.1063/1.1686808
Energy deficits in pulsed field evaporation and deficit compensated atom‐probe designs
E. Müller (1974)
10.1016/S1044-5803(99)00064-9
Atom Probe Field Ion Microscopy
M. Miller (1996)
10.1063/1.1144382
The tomographic atom probe: A quantitative three‐dimensional nanoanalytical instrument on an atomic scale
D. Blavette (1993)
10.1016/0169-4332(94)00492-7
Improvements in the transmission of voltage evaporation pulses in the atom probe
S. Sijbrandij (1995)
10.1016/0169-4332(95)00394-0
Investigation of precipitation in a new maraging stainless steel
K. Stiller (1996)
10.1016/0169-4332(95)00406-8
Improvements in the mass resolution of the three-dimensional atom probe
S. J. Sijbrandij (1996)



This paper is referenced by
10.5681/apb.2014.043
Formulation and physicochemical characterization of buccoadhesive microspheres containing diclofenac sodium.
M. Jelvehgari (2014)
10.1016/S0304-3991(01)00098-5
Analysis conditions of an industrial Al-Mg-Si alloy by conventional and 3D atom probes.
F. Danoix (2001)
10.1111/j.1365-2818.2009.03359.x
Clustering and nearest neighbour distances in atom probe tomography: the influence of the interfaces
T. Philippe (2010)
Mechanical properties and microstructure of Al-Sc with rare-earth element or Al2O3 additions
R. A. Karnesky (2007)
10.3384/DISS.DIVA-159187
Atom Probe Tomography of Hard Nitride and Boride Thin Films
David L. J. Engberg (2019)
10.1002/9781119051862.CH10
Atom Probe Tomography of Glasses
D. K. Schreiber (2015)
10.1007/S100050010050
Three-dimensional Investigation of Ceramic/Metal Heterophase Interfaces by Atom-probe Microscopy.
Rüsing (2000)
10.1007/978-1-4614-8721-0_5
Data Processing and Reconstruction
D. Larson (2013)
10.1016/J.ACTAMAT.2011.10.046
Kinetic pathways for phase separation: An atomic-scale study in Ni–Al–Cr alloys
Z. Mao (2012)
Influence of a mechanical load on the ageing of Fe-Cr alloys
A. Dahlström (2019)
10.1016/S0079-6425(01)00007-X
Nanoscale microstructural analysis of metallic materials by atom probe field ion microscopy
K. Hōno (2002)
10.1098/rsta.2002.1139
Combined atomic–scale modelling and experimental studies of nucleation in the solid state
A. Cerezo (2003)
10.1016/S0304-3991(02)00322-4
Improvement of the mass resolution of the atom probe using a dual counter-electrode.
B. Deconihout (2003)
10.1016/j.jnucmat.2019.151863
On the history and status of reactor pressure vessel steel ductile to brittle transition temperature shift prediction models
G. Odette (2019)
10.1007/S10853-006-7768-0
Comparison of the number densities of nanosized Cu-rich precipitates in ferritic alloys measured using EELS and EDX mapping, HREM and 3DAP
S. Lozano-perez (2006)
10.1109/JPHOTOV.2011.2170447
Characterization of Grain Boundaries in Cu(In,Ga)Se$_{\bf 2}$ Films Using Atom-Probe Tomography
O. Cojocaru-Mirédin (2011)
10.1016/J.ACTAMAT.2019.01.017
Interfacial free energies, nucleation, and precipitate morphologies in Ni-Al-Cr alloys: Calculations and atom-probe tomographic experiments
Z. Mao (2019)
10.1016/S0921-5093(01)01885-8
Measurement of the Gibbsian interfacial excess of solute at an interface of arbitrary geometry using three-dimensional atom probe microscopy
O. Hellman (2002)
10.1063/1.3021061
Phase transformation sequence and magnetic properties of melt-spun SmCo-based alloy after isochronal heat treatment
X. Xiong (2008)
10.1016/S0304-3991(02)00317-0
Efficient sampling for three-dimensional atom probe microscopy data.
O. Hellman (2003)
10.1016/S1359-6462(98)00485-0
Grain boundary segregation in boron added interstitial free steels studied by 3-dimensional atom probe
K. Seto (1999)
10.1016/S0965-9773(99)00220-2
High resolution studies of metallic nanocomposite materials
P. J. Warren (1999)
10.1080/0141861031000113343
Crystallization behaviour in a new multicomponent Ti16.6Zr16.6Hf16.6Ni20Cu20Al10 metallic glass developed by the equiatomic substitution technique
K. Kim (2003)
Phenomenological model for electronic stopping of low-velocity ions in crystalline solids
J. Sillanp (2000)
10.1557/MRS2009.142
On the Genesis of Nuclei and Phase Separation on an Atomic Scale
D. Seidman (2009)
10.1007/978-1-4614-3436-8_3
From Field Desorption Microscopy to Atom Probe Tomography
B. Gault (2012)
Nano Scale Compositional Analysis by Atom Probe Tomography: I. Fundamental Principles and Instruments
Woo-Young Jung (2011)
10.1007/S10853-006-0562-1
The formation mechanism of aluminium oxide tunnel barriers
A. Cerezo (2006)
10.1016/S1359-6462(01)00891-0
Applications of nanocomposites
B. Cantor (2001)
10.1007/978-1-4614-8721-0
Local Electrode Atom Probe Tomography: A User's Guide
D. Larson (2013)
3D field ion microscopy and atom probe tomography techniques for the atomic scale characterisation of radiation damage in tungsten
M. Dagan (2016)
Nanoscale Analysis of Materials using a Local-Electrode Atom Probe
D. J. Larson (2006)
See more
Semantic Scholar Logo Some data provided by SemanticScholar