Online citations, reference lists, and bibliographies.
← Back to Search

Model For The Field Effect From Layers Of Biological Macromolecules On The Gates Of Metal-oxide-semiconductor Transistors

D. Landheer, G. Aers, W. R. Mckinnon, M. J. Deen, J. C. Ranuárez
Published 2005 · Physics

Cite This
Download PDF
Analyze on Scholarcy
Share
The potential diagram for field-effect transistors used to detect charged biological macromolecules in an electrolyte is presented for the case where an insulating cover layer is used over a conventional eletrolyte-insulator metal-oxide-semiconductor (EIMOS) structure to tether or bind the biological molecules to a floating gate. The layer of macromolecules is modeled using the Poisson-Boltzmann equation for an ion-permeable membrane. Expressions are derived for the charges and potentials in the EIMOS and electrolyte-insulator-semiconductor structures, including the membrane and electrolyte. Exact solutions for the potentials and charges are calculated using numerical algorithms. Simple expressions for the response are presented for low solution potentials when the Donnan potential is approached in the bulk of the membrane. The implications of the model for the small-signal equivalent circuit and the noise analysis of these structures are discussed.
This paper references
10.1143/JJAP.43.3855
Field effect transistor-based bimolecular sensor employing a Pt reference electrode for the detection of deoxyribonucleic acid sequence
D. Kim (2004)
Operation and modeling of the MOS transistor
Y. Tsividis (1987)
10.1016/S0026-2714(02)00025-2
Electrical noise and RTS fluctuations in advanced CMOS devices
G. Ghibaudo (2002)
10.1002/PSSA.2211240225
Improved Analysis of Low Frequency Noise in Field‐Effect MOS Transistors
G. Ghibaudo (1991)
10.1109/T-ED.1986.22429
A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor
C. Fung (1986)
10.1109/T-ED.1984.21687
Modified 1/f trapping noise theory and experiments in MOS transistors biased from weak to strong inversion—Influence of interface states
G. Reimbold (1984)
10.1007/978-1-4613-2359-4
Comprehensive Treatise of Electrochemistry
J. O. Bockris (1981)
10.1039/B204444G
Recent advances in biologically sensitive field-effect transistors (BioFETs).
M. J. Schöning (2002)
10.1016/0038-1101(89)90113-5
On the theory of carrier number fluctuations in MOS devices
G. Ghibaudo (1989)
10.1016/S0925-4005(02)00301-5
Thirty years of ISFETOLOGY ☆: What happened in the past 30 years and what may happen in the next 30 years
P. Bergveld (2003)
10.1016/0038-1101(68)90100-7
Low frequency noise in MOS transistors—I Theory
S. Christensson (1968)
10.1063/1.1755429
Comprehensive study of noise processes in electrode electrolyte interfaces
A. Hassibi (2004)
10.1016/S0022-0728(97)80115-5
Modern Aspects of Electrochemistry
R. Parsons (1985)
10.1016/J.BIOS.2004.01.019
Labelfree fully electronic nucleic acid detection system based on a field-effect transistor device.
F. Uslu (2004)
10.1109/T-ED.1983.21284
Operation of chemically sensitive field-effect sensors as a function of the insulator-electrolyte interface
L. Bousse (1983)
10.1103/PhysRevLett.94.148103
DNA in nanopores: counterion condensation and coion depletion.
Y. Rabin (2005)
10.1109/16.34242
A 1/f noise technique to extract the oxide trap density near the conduction band edge of silicon
Raj Jayaraman (1989)
10.1109/JQE.1979.1069942
The physics of semiconductor devices
H. Grubin (1979)
10.1021/JP963056H
DIRECT DETECTION OF THE HYBRIDIZATION OF SYNTHETIC HOMO-OLIGOMER DNA SEQUENCES BY FIELD EFFECT
É. Souteyrand (1997)
10.1021/LA010833I
Amphifunctionally Electrified Interfaces: Coupling of Electronic and Ionic Surface-Charging Processes
J. Duval (2001)
10.1007/S002160051549
Biosensors and biochips: advances in biological and medical diagnostics
T. Vo-Dinh (2000)
10.1073/pnas.232276699
Electronic detection of DNA by its intrinsic molecular charge
J. Fritz (2002)
10.9783/9781512803051
Semiconductor surface physics
R. Kingston (1957)
10.1063/1.442812
Single electrode potentials related to flat‐band voltage measurements on EOS and MOS structures
L. Bousse (1982)
10.1021/BK-1987-0323
Geochemical processes at mineral surfaces
J. Davis (1987)
10.1016/0021-9797(88)90230-5
Double-layer interaction regulated by the donnan potential
H. Ohshima (1988)
10.1016/J.BIOS.2003.09.009
Direct electrical detection of hybridization at DNA-modified silicon surfaces.
W. Cai (2004)
10.1051/ANPHYS/191709070129
Sur la fonction électrocapillaire
G. Gouy (1916)
10.1006/JCIS.2001.8144
The electrical double layer on gold probed by electrokinetic and surface force measurements.
M. Giesbers (2002)
10.1016/0021-9797(91)90130-Z
Zeta potential measurements of Ta2O5 and SiO2 thin films
L. Bousse (1991)
10.1021/LA047886V
Formation, characterization, and chemistry of undecanoic acid-terminated silicon surfaces: patterning and immobilization of DNA.
R. Voicu (2004)
10.1109/7361.983465
Chemical sensors for portable, handheld field instruments
D. Wilson (2001)
10.1063/1.1722077
Calculation of the Space Charge, Electric Field, and Free Carrier Concentration at the Surface of a Semiconductor
R. Kingston (1955)
10.1016/J.BIOS.2004.08.010
Electrical detection of biomolecular interactions with metal-insulator-semiconductor diodes.
P. Estrela (2005)
10.1109/16.47770
A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors
K. K. Hung (1990)
10.1016/0956-5663(91)85009-L
A critical evaluation of direct electrical protein detection methods.
P. Bergveld (1991)
10.1039/F19747001807
Site-binding model of the electrical double layer at the oxide/water interface
D. E. Yates (1974)
10.1007/978-3-642-68247-6
Insulating Films on Semiconductors
M. Schulz (1981)
10.1080/14786440408634187
LI. A contribution to the theory of electrocapillarity
D. Chapman (1913)
10.1073/PNAS.85.23.8939
Characterization of the minor groove environment in a drug-DNA complex: bisbenzimide bound to the poly[d(AT)].poly[d(AT)]duplex.
R. Jin (1988)



This paper is referenced by
10.1109/IEDM.2008.4796733
Overcoming the screening-induced performance limits of nanowire biosensors: A simulation study on the effect of electro-diffusion flow
Y. Liu (2008)
10.1002/PSSA.200622447
Transistor based study of the electrolyte/SiO2 interface
C. Gentil (2006)
10.1109/LED.2008.2001406
Amorphous Silicon Thin-Film Transistors Gated Through an Electrolyte Solution
D. Gonçalves (2008)
10.1016/J.SNB.2011.10.002
SPICE macromodel of silicon-on-insulator-field-effect-transistor-based biological sensors
P. Fernandes (2012)
10.1007/s11051-018-4254-y
Conductance through glycine in a graphene nanogap
Puspitapallab Chaudhuri (2018)
10.1016/B978-012373738-0.50009-X
Detection of charged macromolecules by means of field-effect devices (FEDs): possibilities and limitations
M. J. Schöning (2008)
10.1063/1.4825119
The future scalability of pH-based genome sequencers: A theoretical perspective
J. Go (2013)
10.4310/maa.2019.v26.n2.a4
Diffusion-limited Reactions in Nanoscale Electronics
R. M. Evans (2017)
10.1049/iet-cds:20070162
Analytic modelling of biotransistors
M. W. Shinwari (2008)
10.1063/1.2355542
Noise considerations in field-effect biosensors
M. J. Deen (2006)
10.1039/c1an15568g
Silicon nanowire ion sensitive field effect transistor with integrated Ag/AgCl electrode: pH sensing and noise characteristics.
S. Kim (2011)
10.1109/MWSCAS.2012.6292034
Noise effects in field-effect transistor biological sensor detection circuits
K. D. Cantley (2012)
10.1016/j.bios.2019.03.003
Specific and label-free immunosensing of protein-protein interactions with silicon-based immunoFETs.
Ie Mei Bhattacharyya (2019)
10.1039/B612469K
Chemical and biological sensors using polycrystalline silicon TFTs
P. Estrela (2007)
10.1016/J.APSUSC.2011.12.102
Molecular gating of transistors by amine-terminated layers
Oren Shaya (2012)
Investigation of transition metal dichalcogenide monolayer channel ion sensitive fet as ph and biomolecule sensors
E. Rahman (2016)
10.1063/1.5011141
A theoretical study on tunneling based biosensor having a redox-active monolayer using physics based simulation
Kyoung Yeon Kim (2018)
10.1016/J.SNB.2008.11.048
Fabrication and application of silicon nanowire transistor arrays for biomolecular detection
Xuan Thang Vu (2010)
10.1039/c6sm01445c
A mathematical model for electrical impedance spectroscopy of zwitterionic hydrogels.
Sarah E. Feicht (2016)
10.1063/1.2345466
Sensitivity of a field-effect transistor in detecting DNA hybridization, calculated from the cylindrical Poisson-Boltzmann equation
W. R. Mckinnon (2006)
10.1063/1.3247577
Temperature dependence of buried channel ion sensitive field effect transistors
Roman Novitski (2009)
10.1557/PROC-0951-E05-09
Post-processing of Commercial CMOS Chips for the Fabrication of DNA Bio-FET Sensor Arrays
W. Jiang (2006)
10.1109/MNRC.2008.4683409
Optimization of DNA detection using FETs
M. W. Shinwari (2008)
10.1016/J.BIOS.2006.09.014
Field-effect sensors with charged macromolecules: characterisation by capacitance-voltage, constant-capacitance, impedance spectroscopy and atomic-force microscopy methods.
A. Poghossian (2007)
10.7567/JJAP.57.04FM02
Calculation of surface potentials at the silica–water interface using molecular dynamics: Challenges and opportunities
B. Lowe (2018)
10.1063/1.3476337
Transistor gating by polar molecular monolayers
O. Shaya (2010)
Silizium Nanoribbon Feld-Effekt Transistoren zur Kopplung an elektroaktive Zellen
M. Jansen (2014)
10.1109/TCOMM.2016.2589935
Modeling and Analysis of SiNW FET-Based Molecular Communication Receiver
M. Kuscu (2016)
10.1109/ASDAM.2008.4743345
Silicon-based field-effect devices for (bio-)chemical sensing
M.J. Schoning (2008)
10.1143/JJAP.49.01AG07
Full Three-Dimensional Simulation of Ion-Sensitive Field-Effect Transistor Flatband Voltage Shifts Due to DNA Immobilization and Hybridization
S. Uno (2010)
10.7298/X46T0JNJ
Dynamic Models of Non-Faradaic Electrochemical Sensors for Polyelectrolytes
Philip H. Gordon (2017)
10.1002/PSSA.200622465
Label-free detection of DNA using field-effect transistors
S. Ingebrandt (2006)
See more
Semantic Scholar Logo Some data provided by SemanticScholar