Online citations, reference lists, and bibliographies.
← Back to Search

Surface-plasmon Mode Hybridization In Subwavelength Microdisk Lasers

R. Perahia, T. Alegre, A. Safavi-Naeini, O. Painter
Published 2009 · Physics

Save to my Library
Download PDF
Analyze on Scholarcy
Share
Hybridization of surface-plasmon and dielectric waveguide whispering-gallery modes are demonstrated in a semiconductor microdisk laser cavity of subwavelength proportions. A metal layer is deposited on top of the semiconductor microdisk, the radius of which is systematically varied to enable mode hybridization between surface-plasmon and dielectric modes. The anticrossing behavior of the two cavity mode types is experimentally observed via photoluminescence spectroscopy and optically pumped lasing action at a wavelength of λ ~1.3 µm is achieved at room temperature.
This paper references
E
M. T. Hill (2007)
Lett
T. Baba (1997)
10.1116/1.1701848
Fabrication of high-quality-factor photonic crystal microcavities in InAsP/InGaAsP membranes
K. Srinivasan (2004)
Lett
J. K. Hwang (2000)
10.1063/1.2191475
Measuring the role of surface chemistry in silicon microphotonics
M. Borselli (2006)
Opt. Express
P J Sun
10.1515/9783110685039-030
s ? ? ? ? ? ? ? ? ?
Hung-Yu Tseng (2005)
Appl. Phys. Lett
H Shih
J. Vac. Sci. Technol. B
P E Srinivasan
Opt. Express
C P Michael
Appl. Phys. Lett
T R Tai
10.1063/1.2715107
Identification of Modes and Single Mode Operation of Sapphire-Bonded Photonic Crystal Lasers under Continuous-Wave Room Temperature Operation
Min-Hsiung Shih (2007)
10.1016/j.otohns.2009.05.016
Nature
R. Rosenfeld (2009)
10.1038/NPHOTON.2007.171
Lasing in metallic-coated nanocavities
M. Hill (2007)
10.1063/1.106693
On the linewidth of microcavity lasers
G. Björk (1992)
10.1198/000313001750358509
APPL
A. Glen (2001)
10.1063/1.99902
Optical measurement of surface recombination in InGaAs quantum well mesa structures
K. Tai (1988)
Electron. Lett
F J Levi
10.1038/nature07627
High-Q surface-plasmon-polariton whispering-gallery microcavity
B. Min (2009)
Nature (London) 457
B. K. Min (2009)
10.1177/001452469000101110
"J."
G.G. Stokes (1890)
Appl. Phys. Lett
P Agrawal
10.1515/9783111548050-027
P ? ? ? ? ? ? ? % ? ? ? ?
Lesterol IN Pregnancy (1991)
10.1049/EL:19931109
Room temperature operation of submicrometre radius disk laser
A. F. Levi (1993)
Phys
P. R. Rice (1994)
Nat. Photonics
S.-H Eijkemans
10.1364/OE.15.004745
An optical fiber-taper probe for wafer-scale microphotonic device characterization.
C. P. Michael (2007)
Physics Today 46
Y. Yamamoto (1993)
10.1063/1.105443
Intensity and phase noise in microcavity surface-emitting semiconductor lasers
G. Agrawal (1991)
Phys. Rev. A
R Rice
10.1109/68.883808
Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 /spl mu/m
J. K. Hwang (2000)
Appl. Phys. Lett
M Borselli
Appl. Phys. Lett
A Björk
10.1103/PHYSREVA.50.4318
Photon statistics of a cavity-QED laser: A comment on the laser-phase-transition analogy.
Rice (1994)
10.1063/1.881356
Optical Processes in Microcavities
Y. Yamamoto (1993)
Lett
A.F.J. Levi (1993)
IEEE Photonics Technol. Lett
M Baba
10.1038/nature01937
Surface plasmon subwavelength optics
W. Barnes (2003)
10.1126/SCIENCE.284.5421.1819
Two-dimensional photonic band-Gap defect mode laser
Painter (1999)
10.1364/OE.17.011107
Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides.
M. T. Hill (2009)
Nature 424
W. L. Barnes (2003)
Phys
P. B. Johnson (1972)
Opt. Lett
C Sirtori
10.1103/PHYSREVB.6.4370
Optical Constants of the Noble Metals
P. Johnson (1972)
Phys. Rev. B J. Vac. Sci. Technol. B
B Johnson
IEEE Photonics Technol. Lett
K Hwang
10.1109/68.593330
Lasing characteristics of GaInAsP-InP strained quantum-well microdisk injection lasers with diameter of 2-10 /spl mu/m
T. Baba (1997)
10.1116/1.590223
GaInAsP/InP distributed feedback lasers grown directly on grated substrates by solid-source molecular beam epitaxy
W. Hwang (1998)
10.1364/OL.23.001366
Long-wavelength (? ? 8–11.5??µm) semiconductor lasers with waveguides based on surface plasmons
C. Sirtori (1998)



This paper is referenced by
10.1021/nl401210b
Confined Tamm plasmon lasers.
C. Symonds (2013)
10.1109/JPHOT.2010.2071413
Optical Microcavities Clad by Low-Absorption Electrode Media
Özlem Şenlik (2010)
10.1109/JPHOT.2011.2128863
Generation of Surface Plasmon Polariton Using Plasmonic Resonant Cavity Based on Microdisk Laser
O. Kurniawan (2011)
10.1109/SUM.2014.19
Semiconductor Nanolasers (A Tutorial)
C. Ning (2014)
10.1088/1674-1056/27/11/114210
Electrically pumped metallic and plasmonic nanolasers
M. Hill (2018)
10.1364/OE.19.015109
Plasmonic distributed feedback lasers at telecommunications wavelengths.
M. Marell (2011)
10.1088/2040-8986/ab490d
Optoplasmonics: basic principles and applications
Y. Hong (2019)
10.1117/12.861358
Electrically pumped gap-plasmon mode semiconductor core lasers
M. Hill (2010)
10.7567/JJAP.53.112703
Proposal and numerical study on capsule-shaped nanometallic semiconductor lasers
B. Zhang (2014)
10.1117/1.AP.1.1.014002
Semiconductor nanolasers and the size-energy-efficiency challenge: a review
C. Ning (2019)
10.1364/JOSAB.27.000B36
Status and prospects for metallic and plasmonic nano-lasers [Invited]
M. Hill (2010)
10.1109/JPHOT.2018.2849976
Cascaded Microbottle Resonator and Its Application in Add–Drop Filter
Yiheng Yin (2018)
Design and Development of Electrically Pumped Coaxial Nanoscale Laser for On-chip Optical Communication - TOPIC STIR
M. Khajavikhan (2015)
10.1155/2011/314952
Surface-Emitting Metal Nanocavity Lasers
M. Hill (2011)
Fabrication and Characterization of Metallic Cavity Nanolasers
Kang Ding (2014)
10.1016/J.PQUANTELEC.2018.05.001
Nanolasers: Second-order intensity correlation, direct modulation and electromagnetic isolation in array architectures
S. Pan (2018)
10.1364/OE.18.019242
Continuous-wave subwavelength microdisk lasers at λ = 1.53 µm.
Z. Liu (2010)
10.1109/ICTON.2012.6254466
Chip-to-chip plasmonic interconnects and the activities of EU project NAVOLCHI
A. Melikyan (2012)
10.1002/PSSA.201532561
Q factor improvement by capsule‐shaped metallic cavity structure for subwavelength lasers
B. Zhang (2016)
10.1364/CLEO_AT.2011.JMA1
Lasing and spontaneous emission in gap-plasmon mode Bragg grating waveguides
M. Marell (2011)
10.1063/1.3598961
Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260 K
K. Ding (2011)
10.1063/1.4726043
InGaP microdisk optical resonators embedded in indium tin oxide
Shu-Yu Su (2012)
10.1007/978-3-319-27635-9
Selforganization in Complex Systems: The Past, Present, and Future of Synergetics
G. Wunner (2016)
10.1364/OE.21.004728
Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature.
K. Ding (2013)
10.1002/LPOR.201100040
Plasmon lasers: coherent light source at molecular scales
Renmin Ma (2013)
10.1002/LPOR.201100041
Microcavity plasmonics: strong coupling of photonic cavities and plasmons
R. Ameling (2013)
10.1109/JPHOT.2010.2044785
Nanolasers Beat the Diffraction Limit
M. T. Hill (2010)
10.1109/PHOTONICS.2010.5699079
Infrared plasmonic nano-lasers based on metal insulator metal waveguides
M. Hill (2010)
Light generation, size constraints, and dynamic cavities in silicon photonics
J. Shainline (2011)
10.1039/c7cp06780a
Plasmon lasers: coherent nanoscopic light sources.
Claire Deeb (2017)
10.1103/PHYSREVB.84.235118
Surface plasmon and photonic mode propagation in gold nanotubes with varying wall thickness
J. Kohl (2011)
10.1021/acsnano.5b01319
Single Mode ZnO Whispering-Gallery Submicron Cavity and Graphene Improved Lasing Performance.
Jitao Li (2015)
See more
Semantic Scholar Logo Some data provided by SemanticScholar